Mesozoic carbonate slope facies marking the Arabian platform margin in Oman: depositional history, morphology and palaeogeography

1990 ◽  
Vol 49 (1) ◽  
pp. 139-159 ◽  
Author(s):  
K. F. Watts
2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Ercan Özcan ◽  
Ali Osman Yücel ◽  
Rita Catanzariti ◽  
Sibel Kayğılı ◽  
Aral I. Okay ◽  
...  

AbstractThe standard reconstruction of species of Orbitoides d’Orbigny into a single lineage during the late Santonian to the end of the Maastrichtian is based upon morphometric data from Western Europe. An irreversible increase in the size of the embryonic apparatus, and the formation of a greater number of epi-embryonic chamberlets (EPC) with time, is regarded as the main evolutionary trends used in species discrimination. However, data from Maastrichtian Orbitoides assemblages from Central Turkey and the Arabian Platform margin (Southeastern Turkey and Oman) are not consistent with this record. The Maastrichtian Besni Formation of the Arabian Platform margin in Southeastern Turkey yields invariably biconvex specimens, with small, tri- to quadrilocular embryons and a small number of EPC, comparable to late Campanian Orbitoides medius (d’Archiac). The upper Maastrichtian Taraklı Formation from the Sakarya Basin of Central Turkey contains two distinct, yet closely associated forms of Orbitoides, easily differentiated by both external and internal features. Flat to biconcave specimens possess a small, tri- to quadrilocular embryonic apparatus of Orbitoides medius-type and a small number of EPC, whereas biconvex specimens possess a large, predominantly bilocular embryonic apparatus, and were assigned to Orbitoides ex. interc. gruenbachensis Papp–apiculatus Schlumberger based on morphometry. The flat to biconcave specimens belong to a long overlooked species Orbitoides pamiri Meriç, originally described from the late Maastrichtian of the Tauride Mountains in SW Turkey. This species is herein interpreted to be an offshoot from the main Orbitoides lineage during the Maastrichtian, as are forms that we term Orbitoides ‘medius’, since they recall this species, yet are younger than normal occurrence with the accepted morphometrically defined lineage. The consistent correlation between the external and internal test features in O. pamiri implies that the shape of the test is not an ecophenotypic variation, but appears to be biologically controlled. We, therefore, postulate that more than one lineage of Orbitoides exists during the Maastrichtian, with a lineage that includes O. ‘medius’ and O. pamiri displaying retrograde evolutionary features.


GeoArabia ◽  
2003 ◽  
Vol 8 (4) ◽  
pp. 643-662 ◽  
Author(s):  
Christian Montenat ◽  
Pascal Barrier ◽  
Henri J. Soudet

ABSTRACT A major upper Aptian unconformity is recorded on the eastern Arabian Platform, between the lower Aptian Qishn limestone and the Albian Nahr Umr marls. The study of this hiatus, in the western homocline of the Haushi-Huqf Uplift (Eastern Central Oman) provides new data about the evolution of the eastern Arabian Platform during middle Cretaceous times. The limestones of the Qishn formed a shoaling sequence, mainly composed of matrix-rich, coarse-grained sediment with small rudistids and algal build-ups, that led to a subemergent environment. A third-order sequence is recognized in the Qishn platform carbonates, which is partitioned into three minor sequences. The Qishn carbonate was subjected to pre-lithification normal faulting. A thick ferrugineous crust (hardground) covered the top surface of the Qishn as well as the faultscarps before they were buried under the Albian Nahr Umr marls. The faults are dominantly NW-trending, SW-facing, normal faults. The significance of the faulting remains hypothetical. The syndiagenetic NW-SE normal faults may correspond to ‘en-echelon’ faults, combined with a sinistral movement of the Haushi-Nafun Fault (HNF). The HNF acted as a left-lateral, strike-slip fault during late Cretaceous, pre-Maastrichtian times. This movement possibly began earlier, during the late Aptian. It could be related to the dynamics of the eastern Arabian margin during the Cretaceous (Masirah transform margin). There are some indications testifying to the activity of the Masirah transform fault during the early-middle Cretaceous. The margin kinematics may be responsible for the reactivation of nearby large faults affecting the platform basement (for instance the HNF). A slight sinistral reactivation of the HNF may have induced the development of the Aptian NW-trending normal faults. Moreover, the occurrence of early Cretaceous strike-slip movements in the Arabian Platform have already been envisaged, at a plate-scale, as a consequence of the South Atlantic extension. On this assumption, the Aptian fault blocks may have resulted from the development of a sinistral transtension along the HNF.


2001 ◽  
Vol 28 (1) ◽  
pp. 145-148 ◽  
Author(s):  
Philippe Razin ◽  
Jean Roger ◽  
Chantal Bourdillon ◽  
Josep Serra-Kiel ◽  
Jean Philip ◽  
...  

GeoArabia ◽  
2003 ◽  
Vol 8 (2) ◽  
pp. 275-294 ◽  
Author(s):  
Bernd Eilrich ◽  
Jürgen Grötsch

ABSTRACT The Jurassic and Lower Cretaceous carbonate succession exposed near Khatt provides exceptional conditions for the investigation of sedimentary facies and depositional geometries in a carbonate slope-to-platform-margin setting. A coarsening-upward sequence in Lower Cretaceous limestones indicates decreasing depth of deposition and platform progradation. A pronounced shedding of sediments containing reefal fragments occurs in a slope environment with a well exposed basin-to-platform transect. The carbonate succession consists of mudstone, wackestone, grainstone, coarse rudstone with conglomerate/breccia interbeds, and framestone at the top. The depositional architecture is characterized by the abundance of massive sheet- or channel-like limestone bodies within thinly bedded and generally uniform strata. Quantitative analysis of many carbonate channel deposits and their geometries measured in outcrop led to the distinction of two major types. Type I channel deposits are thin (0.3 to 5 m) but massive, and are commonly irregularly shaped in cross-section. They are as much as 200 m wide. Type I channel deposits are characterized by a wide size range of skeletal and non-skeletal carbonate components. Type II channel deposits, by contrast, are more regularly bedded and have much larger thickness-to-width ratios, in general close to 1:10. Furthermore, they are composed of packstone to grainstone calciturbidite sediments. As with some sheet deposits, they can be correlated through most of the 5.5-km-long Khatt outcrop. Stratigraphically, however, their occurrence is very much restricted, indicating significant alternation of depositional styles as a consequence of changing carbonate platform production and changing sedimentary environments. The data presented here can serve as input for 3-D geological modeling of equivalent depositional environments in the subsurface. They can also be applied to object-based deterministic and stochastic facies modeling.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Sign in / Sign up

Export Citation Format

Share Document