central turkey
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 67)

H-INDEX

37
(FIVE YEARS 5)

The Holocene ◽  
2021 ◽  
pp. 095968362110417
Author(s):  
John Wainwright ◽  
Gianna Ayala

Alluvial landscapes have long been considered optimal locations for Neolithic settlement because of the availability of water and nutrient-bearing silts. However, the dynamics of these landscapes have often been underestimated in relation to the interactions of precipitation, temperature and vegetation at catchment scale, along with flow and geomorphic processes in the channel and adjacent areas. In this paper we employ a multi-method approach to model the alluvial landscape around Çatalhöyük in central Turkey to develop a more nuanced understanding of the potential interactions between the Neolithic population and its environment. Starting from detailed sedimentological reconstructions of the area surrounding the site, we use climate and vegetation proxies to estimate past climate scenarios. Four temperature and five precipitation scenarios and two vegetation endmember scenarios were constructed for the Neolithic. These scenarios are coupled with a stochastic weather generator to simulate past flows using the HEC-HMS rainfall-runoff model. Impacts and extents of past flooding are then estimated using bankfull flow estimates from the modelled time series. The model results suggest that crops at Çatalhöyük were less vulnerable to flooding than has previously been supposed, with flooding spread more evenly through the year and with relatively unerosive flows. Spatial variability suggests a range of wet and dry conditions would have been available at different times of the year near the site. Interannual and decadal variability was important and so resilience against drought is also a significant consideration and so subsistence patterns must have been resilient to this variability to enable the settlement to continue for over a millennium. This interpretation of the riverscape of Neolithic Çatalhöyük as a mosaic of wet and dry conditions is compatible with the range of plant and animal remains excavated from the site.


Kew Bulletin ◽  
2021 ◽  
Author(s):  
Ergin Hamzaoğlu ◽  
Murat Koç ◽  
İlker Büyük

2021 ◽  
Author(s):  
Abdurrahman Lermi ◽  
Emmanuel Daanoba Sunkari

Abstract Globally, potentially toxic elements (PTEs) are regarded as an important group of pollutants for the wider environment because of their intrinsic toxicity and probable accumulation in the soil-water-plant system. In this regard, this study assessed the pollution levels and probable human health risks of PTEs in the soil-water-plant system in the Bolkar mining district of the Niğde Province in south-central Turkey. Pollution assessment using contamination factor, enrichment factor, index of geoaccumulation, and soil pollution index reveals moderate to extremely high pollution of PTEs in the soil, exposing the soils to extreme toxicity levels. The areas that fall under the toxic to extremely toxic categories are in proximity to the ore slags and agricultural lands towards the central and southern domains of the study area. The water hazard index (WHI) values indicate that 100% of the samples collected in both winter and fall seasons are of extreme toxicity (WHI > 15). Arsenic is the dominant contaminant among the PTEs in the soil and water samples. The bioconcentration factor values of the PTEs in most of the fruit plants are > 1, indicating very high levels of element transfer from the soil and water to the plants. The probabilistic human health risk assessment involved exposure to arsenic in groundwater (a major pathway to humans) since it is the only carcinogenic element in this study. The estimated daily intake of arsenic-contaminated water exceeds the safe limit of 5 × 10− 8 mg/kg/day. About 33.3% and 55.6% of the groundwater samples have higher hazard quotient and carcinogenic risk values of arsenic in the winter and fall seasons, respectively. This implies that the people are more exposed to the carcinogenic effects of drinking arsenic-contaminated water.


2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Ercan Özcan ◽  
Ali Osman Yücel ◽  
Rita Catanzariti ◽  
Sibel Kayğılı ◽  
Aral I. Okay ◽  
...  

AbstractThe standard reconstruction of species of Orbitoides d’Orbigny into a single lineage during the late Santonian to the end of the Maastrichtian is based upon morphometric data from Western Europe. An irreversible increase in the size of the embryonic apparatus, and the formation of a greater number of epi-embryonic chamberlets (EPC) with time, is regarded as the main evolutionary trends used in species discrimination. However, data from Maastrichtian Orbitoides assemblages from Central Turkey and the Arabian Platform margin (Southeastern Turkey and Oman) are not consistent with this record. The Maastrichtian Besni Formation of the Arabian Platform margin in Southeastern Turkey yields invariably biconvex specimens, with small, tri- to quadrilocular embryons and a small number of EPC, comparable to late Campanian Orbitoides medius (d’Archiac). The upper Maastrichtian Taraklı Formation from the Sakarya Basin of Central Turkey contains two distinct, yet closely associated forms of Orbitoides, easily differentiated by both external and internal features. Flat to biconcave specimens possess a small, tri- to quadrilocular embryonic apparatus of Orbitoides medius-type and a small number of EPC, whereas biconvex specimens possess a large, predominantly bilocular embryonic apparatus, and were assigned to Orbitoides ex. interc. gruenbachensis Papp–apiculatus Schlumberger based on morphometry. The flat to biconcave specimens belong to a long overlooked species Orbitoides pamiri Meriç, originally described from the late Maastrichtian of the Tauride Mountains in SW Turkey. This species is herein interpreted to be an offshoot from the main Orbitoides lineage during the Maastrichtian, as are forms that we term Orbitoides ‘medius’, since they recall this species, yet are younger than normal occurrence with the accepted morphometrically defined lineage. The consistent correlation between the external and internal test features in O. pamiri implies that the shape of the test is not an ecophenotypic variation, but appears to be biologically controlled. We, therefore, postulate that more than one lineage of Orbitoides exists during the Maastrichtian, with a lineage that includes O. ‘medius’ and O. pamiri displaying retrograde evolutionary features.


Sign in / Sign up

Export Citation Format

Share Document