Chapter 22 Oil and gas potential of the Russian Arctic Shelf and palaeogeographical mapping of the Barents Sea

2011 ◽  
Vol 35 (1) ◽  
pp. 345-352 ◽  
Author(s):  
V. D. Kaminsky ◽  
O. I. Suprunenko ◽  
V. V. Suslova
Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


Georesursy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 63-79
Author(s):  
Alina V. Mordasova ◽  
Antonina V. Stoupakova ◽  
Anna A. Suslova ◽  
Daria K. Ershova ◽  
Svetlana A. Sidorenko

Unique Leningradsky and Rusanovsky gascondensate fields in the Barrem-Cenomanian layer are discovered in the Kara Sea. Non-industrial accumulations of oil and gas have been discovered in the Lower Cretaceous sediments of the western part of the Barents Sea shelf. However, the structure and oil and gas potential of the Lower Cretaceous sediments of the Barents-Kara shelf remain unexplored. Based on the seismic-stratigraphic and cyclostratigraphic analysis, a regional geological model of the Lower Cretaceous deposits of the Barents-Kara shelf was created, the distribution area and the main stages of the accumulation of clinoforms were identified. As a result of a detailed analysis of the morphology of clinoform bodies, paleogeographic conditions were restored in the Early Cretaceous and a forecast of the distribution of sandy reservoirs was given


2015 ◽  
Vol 465 (2) ◽  
pp. 1229-1232 ◽  
Author(s):  
N. O. Sorokhtin ◽  
L. I. Lobkovsky ◽  
N. E. Kozlov ◽  
N. G. Novikov ◽  
S. L. Nikiforov ◽  
...  

Author(s):  
Evgeny Karulin ◽  
Marina Karulina ◽  
Mikhail Kazantsev ◽  
Aleksander Proniashkin ◽  
Dmitry Zaikin

Ice management (IM) is often required to support offshore production of oil and gas in freezing seas. It helps to mitigate ice impact on marine structures and thus minimize risks of accidents as well as to increase weather windows for marine operations. One of the IM tactics is to use an icebreaker for producing a zone of managed ice for ensuring safe and efficient operation of marine facilities: platforms, offloading terminals, tankers, etc. The choice of the right icebreaker which is best capable to cope with the IM jobs is quite a challenging task. This paper suggests an approach to objectively compare operational efficiency of different icebreakers in performance of some typical IM tasks. This approach made it possible to work out universal criteria for assessing the efficiency of these ships. The criteria of icebreaker efficiency and operational performance have been derived from actual ice breaking and maneuvering data including safety aspects of required icebreaker maneuvers. The paper contains case studies with estimation of the said criteria for a number of IM icebreakers expected to be used for ice management in the south-eastern part of the Barents Sea.


Sign in / Sign up

Export Citation Format

Share Document