scholarly journals Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: a model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil

2015 ◽  
Vol 435 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Nicholas J. Tosca ◽  
V. Paul Wright
2018 ◽  
Vol 36 (5) ◽  
pp. 1136-1156 ◽  
Author(s):  
Yuanhua Qing ◽  
Zhengxiang Lü ◽  
Xiandong Wang ◽  
Xiuzhang Song ◽  
Shunli Zhang ◽  
...  

The oil and gas in the Palaeogene lacustrine carbonate rock reservoirs in the Bohai Sea accumulated during several periods. The reservoir porosity formed during each period affected the degree of accumulation that occurred. In this paper, the percentages of particles, authigenic minerals and pores in the reservoir bed were calculated with the statistical method of microstructure analysis. The formation time was determined with an isotopic analysis of the authigenic carbonate minerals and the homogenization temperature of the gas–liquid inclusions. The percentages of the primary intergranular pores that formed during the different stages were recovered based on the compaction features both before and after the formation of the major authigenic minerals. The evolution of porosity was thus described quantitatively and chronologically, employing the percentages of the residual primary intergranular pores, visceral cavity pores and dissolved pores at the different burial depths. The results indicate that in the initial sediments of the reservoir rock, the primary intergranular porosity was 32.4%. During the early burial stage, the total reservoir porosity increased by up to 46.9%, due to the addition of another type of primary pore, namely visceral cavity pores, which were generated from the decomposition of bioclasts. During the late, deep burial stage, the compaction reduced only 8.2% of the porosity, due to the support of the pore-lining dolomite precipitating during the early stage. Authigenic minerals occupied 12.6% of the porosity, and the dissolution created the secondary porosity by 3.8%. Good preservation of the visceral cavity pores and the growth of the pore-lining dolomites during the early stages are the major factors leading to the high reservoir porosity. The quantitative and chronological characteristics of the reservoir porosity evolution could be described accurately. The prediction of reservoir beds can be better guided than in previously reported methods by applying high resolution microscopic quantitative analysis technology and authigenic mineral timing analysis technology.


1998 ◽  
Vol 38 (1) ◽  
pp. 380 ◽  
Author(s):  
X.W. Sun

The Early Palaeozoic eastern Warburton Basin unconformably underlies the Cooper and Eromanga Basins. Four seismic sequence sets (I−IV) are interpreted. Among them, sequence set II is subdivided into four Cambro-Ordovician depositional sequences. Sequence 1, the oldest, is a shallow shelf deposit that occurs only in the Gidgealpa area. Sequences 2 and 3 were deposited in a wider area; from west to east, environments varyied from deep siliciclastic ramp, carbonate inner-shelf, peritidal, shelf edge, and slope-to-basin. Their seismic reflection configurations are high-amplitude, regionally parallel-continuous, layered patterns, locally mounded geometry, as well as divergent-fill patterns. Sequence 4, the youngest, was deposited in a mixed siliciclastic and carbonate, storm-dominate shelf. Its seismic reflection configurations are moderate amplitude, parallel-layered patterns, decreasing in amplitude upwards.Boundaries between the four sequences generated good secondary porosity in the carbonates. Karst development is interpreted to have generated much of this porosity in shelf and peritidal carbonates, and carbonate build-ups. Shoal-water sandy limestone and calcareous sandstone of Sequence 4 may be other potential reservoir rocks. Potential source rocks comprise mudstone and shale of slope and basin lithofacies. There are two kinds of stratigraphic trap. One is in Sequences 2 and 3, associated with high-relief carbonate build-ups encased in lagoonal mudstone and shelf edge sealed by transgressive siltstone and shale. The other is a transgressive marine shale enclosing porous dolostone of the karstified Sequence 1. In addition, petroleum may have migrated from Permian source rocks of the Cooper Basin to karstified carbonate reservoirs of the Warburton Basin at unconformities.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-93 ◽  
Author(s):  
Yongqiang Yang ◽  
Longwei Qiu ◽  
Jay M. Gregg ◽  
Jim Puckette ◽  
Kuiyuan Liu

Sign in / Sign up

Export Citation Format

Share Document