authigenic minerals
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Nina Kozina ◽  
Liudmila Reykhard ◽  
Olga Dara

This paper presents the results of complex lithological, mineralogical, and geochemical studies of bottom sediments of deep-water basins of the Caspian Sea (Derbent and South Caspian Basins) in areas contaminated by hydrogen sulfide. In the course of complex studies, numerous manifestations of authigenic mineral formation associated with the stage of early diagenesis have been established. Authigenic minerals belonging to the groups of sulfates (gypsum, barite), chlorides (halite), carbonates (calcite, low Mg-calcite; kutnohorite), and sulfides (framboidal pyrite), as well as their forms and composition, have been identified by a complex of analytical methods (X-ray diffractometry (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS); atomic absorption spectroscopy (AAS); coulometric titration (CT)); the nature of their distribution in bottom sediments has been assessed. Carbonates and sulfates are predominant authigenic minerals in the deep-water basins of the Caspian Sea. As a part of the study, differences have been established in the composition and distribution of associations of authigenic minerals in the bottom sediments in the deep-water basins. These are mineral associations characteristic of the uppermost part of the sediments (interval 0–3 cm) and underlying sediments. In the Derbent Basin, in sediments of the interval 3–46 cm, an authigenic association is formed from gypsum, calcite, magnesian calcite, siderite, and framboidal pyrite. An association of such authigenic minerals as gypsum and calcite is formed in sediments of the 0–3 cm interval. In the South Caspian Basin, in sediments of the interval 3–35 cm, an association of such authigenic minerals as gypsum, halite, calcite, magnesian calcite, and framboidal pyrite is formed. The association of such authigenic minerals as gypsum, halite, calcite, magnesian calcite, kutnohorite, and framboidal pyrite is characteristic of sediments of the 0–3 cm interval. We consider the aridity of the climate in the South Caspian region to be the main factor that determines the appearance of such differences in the uppermost layer of sediments of the basins. Judging by the change in the composition of authigenic associations, the aridity of the South Caspian increased sharply by the time of the accumulation of the upper layer of sediments (interval 0–3 cm). Taking into account lithological, mineralogical and geochemical data, the features of the processes of authigenic mineral formation in the deep-water basins of the Caspian Sea under conditions of hydrogen sulfide contamination have been determined. Analysis of the results obtained and published data on the conditions of sedimentation in the Caspian Sea showed that hydrogen sulfide contamination recorded in the bottom layer of the water column of the deep-water basins of the Caspian Sea may affect the formation of authigenic sulfides (framboidal pyrite), sulfates (gypsum), and carbonates (calcite and kutnohorite) associated with the activity of sulfate-reducing bacteria in reducing conditions.


2021 ◽  
pp. SP516-2020-260
Author(s):  
R. J. Chapman ◽  
D. Craw ◽  
N. R. Moles ◽  
D. A. Banks ◽  
M. R. Grimshaw

AbstractPlacer gold particles have traditionally been considered as either detrital products of weathering or authigenic minerals growing within placers. Recent advances in understanding of gold chemistry/bio-geochemistry demonstrate that gold growth in specific environments is plausible, but opinions differ on the importance of ‘new’ gold in the overall placer inventory. Here we draw upon visual inspection over 40,000 polished gold particle sections from locations worldwide to evaluate the implications of gold alloy composition and particle heterogeneity in determining the contributions of detrital and authigenic gold to fluvial placers. We conclude i. the detrital model of placer gold formation is widespread and demonstrable, ii. supergene gold may be a locally important constituent of fluvial placers, iii. gold-rich rims on placer gold particles comprise two distinct components: a surface micron-scale addition of pure Au and a tens- of- micron- scale inner rim formed by Ag depletion, iv. the importance to placer inventories of gold particle formation and modification by biogenic processes is considerably overstated.


2021 ◽  
Author(s):  
Polona Kralj

The Oligocene Smrekovec Volcanic Complex is a remnant of a submarine composite stratovolcano with a complex succession of lavas, autoclastic, pyroclastic, syn-eruptive resedimented volcaniclastic and siliciclastic deposits was a favourable environment for the development of peperites. Despite very complex alteration related to the stratovolcano-hosted hydrothermal system with a deep igneous source, locally elevated geothermal gradients and superimposed hydrothermal/geothermal regimes controlled by the emplacement of a shallow intrusive body, authigenic minerals in peperites - particularly pumpellyite and actinolite - show higher temperature stability ranges than those in the underlying and overlying volcanic deposits irrespectively of their lithofacies, porosity and permeability. The formation of authigenic minerals in peperites, such as laumontite, pumpellyite, epidote, prehnite or actinolite, was apparently controlled by ephemeral and localised high-temperature regimes originating from the parent lava flow. Heated pore waters in the host sediment that could have undergone local mixing with deuteric fluids circulated in peperites until thermal gradients persisted, and were the cause of alteration of juvenile clasts and the mingling sediment. The development of pumpellyite required a suitable precursor - fine-grained volcanic ash.


2021 ◽  
Vol 40 (6) ◽  
pp. 100-110
Author(s):  
A.V. Mozherovsky ◽  

Authigenic minerals in volcanogenic-sedimentary and sedimentary rocks of Southern Primorye from Permian to Miocene time have been studied. Corrensite, rectorite, highly ordered mixed-layer differences of the chlorite-smectite (corrensite-like) and mica-smectite (rectorite-like) types, mica, vermiculite-like differences (?), chlorite, defective chlorite, kaolinite, smectite, calcite, and zeolites were found. Such a set of minerals indicates that the sedimentary layer in the studied sedimentary basins could be three to five kilometer thick, and the temperature of their formation is more than 150°C. The formation of the Lower Cretaceous and Paleocene sedimentary strata has similar features, and probably proceeded first in a shallow sea basin setting of the continental margin (rift stage), sometimes under conditions close to evaporitic (presence of corrensite?), with a frequent change of the facial situation from shallow to deep sedimentation, episodic supplies of volcanic material, and gradual deepening of sedimentation basins. It can be assumed that in Early Cretaceous and Paleogene times, a series of discrete sedimentation basins along the northeastern Asia continental margin developed in a single mineralogical, tectonic, and sedimentological regime of crustal extension: minerals accumulated in the sediments, which in the process of epigenesis transformed in the following directions: a) smectite-rectorite-mica; and b) smectite (palygorskite, sepiolite?) - corrensite-chlorite. In the studied sedimentary complexes three mineralogical «layers» are distinguished: 1) chlorite-mica – mica-chlorite (Permian - Cretaceous); 2) transitional from chlorite and mica to smectite - developed are corrensite, rectorite and highly ordered mixed-layer corrensite-like and rectorite-like minerals (Cretaceous - Paleocene-Eocene), and 3) smectite (from Oligocene to the present).


Author(s):  
Lyudmila G. Vakulenko ◽  
◽  
Dmitry A. Novikov ◽  
Ostap D. Nikolenko ◽  
Fedor F. Dultsev ◽  
...  

The first data of a comprehensive study of the isotope-geochemical features of the water-rock system are presented on the example of the Yu 1 horizon of the Verkh-Tarsk oil field. It was established that the reservoir waters of the developed deposits are similar in the isotopic ratios and located in the same area with the waters of the Apt-Alb-Cenomanian aquifer complex (an agent for flooding). In the cement of silt-sandy rocks among the authigenic minerals most widely represented by calcite, three generations of it were established. A narrow range of δ 13 C values was revealed in the analysis of the δ 13 C - δ 18 О isotope pair. In waters it ranges from -10.5 to -9.1 ‰, and in calcites of the third generation from -10.7 to -9.1 ‰.


2020 ◽  
Author(s):  
Mark Zindorf ◽  
Jurjen Rooze ◽  
Christof Meile ◽  
Gwenael Jouet ◽  
Christian März ◽  
...  

<p>Sediment deposition along continental margins and especially close to the outlets of major river systems is highly dynamic and influenced by changing environmental conditions, such as sea-level variations and the shifting of ocean currents. <br>The upper slope of the Mozambique margin (SE Africa) receives its sediments from the Zambezi River and is the largest river-fed deposition center along the Eastern African Margin. Global sea level rise during the last glacial-Holocene transition led to a re-routing of the Zambezi River sediment plume. This caused order-of-magnitude changes in sedimentation rates along the shelf break of the Mozambique margin. The variable sediment input as well as changing organic matter load and quality resulted in non-steady state early diagenesis leading to changes in formation and upward flow of methane. This is reflected in temporally and spatially variable formation conditions of authigenic minerals (such as pyrite), especially at the sulfate-methane transition zone (SMTZ) where upward-diffusing methane is anaerobically oxidized by sulfate. Pyrite accumulations in sediment cores can be used to define the past positioning of SMTZs. The isotopic composition of sulfur in pyrite can provide information about the geochemical and environmental factors (e.g., availability of methane, sulfate, reactive iron) controlling the formation of these authigenic minerals during different times of sediment deposition.</p><p>We present geochemical data from sediment cores acquired in 2015 during the PAMELA-MOZ4 campaign onboard R/V Pourquoi Pas? offshore Mozambique. A reactive transport model is used to simulate the evolution of early diagenetic conditions over the time of sediment deposition (i.e., the last 27,000 years). By reproducing the currently observed mineral accumulations, the temporal development of methane generation and upward flux, and the past positioning of the SMTZ, can be reconstructed. With this, we are able to put a time constraint on past events of authigenic mineral accumulation and reveal their response to sedimentation rate changes caused by sea-level rise. We further discuss isotope signatures of small-scale diagenetic processes at the Mozambique margin.</p><p>This research was co-funded by TOTAL and IFREMER as part of the PAMELA scientific project.</p>


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Simon V. Hohl ◽  
Shao-Yong Jiang ◽  
Sebastian Viehmann ◽  
Wei Wei ◽  
Qian Liu ◽  
...  

The behaviour of bioavailable trace metals and their stable isotopes in the modern oceans is controlled by uptake into phototrophic organisms and adsorption on and incorporation into marine authigenic minerals. Among other bioessential metals, Cd and its stable isotopes have recently been used in carbonate lithologies as novel tracer for changes in the paleo primary productivity and (bio)geochemical cycling. However, many marine sediments that were deposited during geologically highly relevant episodes and which, thus, urgently require study for a better understanding of the paleo environment are rather composed of a mixture of organic matter (OM), and detrital and authigenic minerals. In this study, we present Cd concentrations and their isotopic compositions as well as trace metal concentrations from sequential leachates of OM-rich shales of the Cryogenian basal Datangpo Formation, Yangtze Platform (South China). Our study shows variable distribution of conservative and bioavailable trace metals as well as Cd isotope compositions between sequential leachates of carbonate, OM, sulphide, and silicate phases. We show that the Cd isotope compositions obtained from OM leachates can be used to calculate the ambient Cryogenian surface seawater of the restricted Nanhua Basin by applying mass balance calculations. By contrast, early diagenetic Mn carbonates and sulphides incorporated the residual Cd from dissolved organic matter that was in isotopic equilibrium with deep/pore waters of the Nanhua Basin. Our model suggests that the Cd isotopic composition of surface seawater at that time reached values of modern oxygenated surface oceans. However, the deep water Cd isotope composition was substantially heavier than that of modern fully oxygenated oceans and rather resembles deep waters with abundant sulphide precipitation typical for modern oxygen minimum zones. This argues for incomplete recycling of Cd and other bioavailable metals shortly after the Sturtian glaciation in the redox stratified Cryogenian Nanhua Basin. Our study highlights the importance of sequential leaching procedures when dealing with impure authigenic sediments such as OM-rich carbonates, mudstones, or shales to achieve reliable trace metal concentrations and Cd isotope compositions as proxies for (bio)geochemical metal cycling in past aquatic systems.


Sign in / Sign up

Export Citation Format

Share Document