Lessons for open standard policies

Author(s):  
Rajiv Shah ◽  
Jay Kesan ◽  
Andrew Kennis
Keyword(s):  
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3921 ◽  
Author(s):  
Wuttichai Boonpook ◽  
Yumin Tan ◽  
Yinghua Ye ◽  
Peerapong Torteeka ◽  
Kritanai Torsri ◽  
...  

Buildings along riverbanks are likely to be affected by rising water levels, therefore the acquisition of accurate building information has great importance not only for riverbank environmental protection but also for dealing with emergency cases like flooding. UAV-based photographs are flexible and cloud-free compared to satellite images and can provide very high-resolution images up to centimeter level, while there exist great challenges in quickly and accurately detecting and extracting building from UAV images because there are usually too many details and distortions on UAV images. In this paper, a deep learning (DL)-based approach is proposed for more accurately extracting building information, in which the network architecture, SegNet, is used in the semantic segmentation after the network training on a completely labeled UAV image dataset covering multi-dimension urban settlement appearances along a riverbank area in Chongqing. The experiment results show that an excellent performance has been obtained in the detection of buildings from untrained locations with an average overall accuracy more than 90%. To verify the generality and advantage of the proposed method, the procedure is further evaluated by training and testing with another two open standard datasets which have a variety of building patterns and styles, and the final overall accuracies of building extraction are more than 93% and 95%, respectively.


2004 ◽  
Vol 48 (3.4) ◽  
pp. 543-556 ◽  
Author(s):  
W. Gellerich ◽  
T. Hendel ◽  
R. Land ◽  
H. Lehmann ◽  
M. Mueller ◽  
...  
Keyword(s):  

2018 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Stephan Wondrak

The present thesis describes the development of a planet tool for an interactive school atlas using an eBook format. Especially the technical and cartographical capabilities of the open standard ePUB 3 are evaluated. An eBook application with interactive and dynamic 2-dimensional visualizations is developed especially to show whether the re-al-world dimensions and distances in the solar system can be mapped in a cartographical correct and for students easy understandable manner. In the first part of the work, the requirements of the planet tool are evaluated in co-operation with experts. The open standards PDF and ePUB 3 are investigated with regard to the requirements for the development of the planet tool. Another chapter describes in detail all significant steps of the development process for a prototype of the planet tool. A graphic file originally created for print production is prepared and enhanced with interactive features to generate one of the eBook pages. This serves to show a potential workflow for the generation of eBook pages in a cross-media atlas production. All sample pages of the prototype show different layouts and contain the entire spectrum of interactive features and multimedia content of modern eBooks. The sample pages are presented and discussed in an own chapter. The results of the present work aim at answering the question concerning the suitability of the open standard ePUB 3 for the development of a multimedia eBook for high school education.


2021 ◽  
Author(s):  
◽  
Craig Anslow

<p>3D web software visualisation has always been expensive, special purpose, and hard to program. Most of the technologies used require large amounts of scripting, are not reliable on all platforms, are binary formats, or no longer maintained. We can make end-user web software visualisation of object-oriented programs cheap, portable, and easy by using Extensible (X3D) 3D Graphics, which is a new open standard. In this thesis we outline our experience with X3D and discuss the suitability of X3D as an output format for software visualisation.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Da-Zhi Sun ◽  
Ji-Dong Zhong

As an open standard for the short-range radio frequency communications, Bluetooth is suitable for Mobile Crowdsensing Systems (MCS). However, the massive deployment of personal Bluetooth-enabled devices also raises privacy concerns on their wielders. Hence, we investigate the privacy of the unilateral authentication protocol according to the recent Bluetooth standard v5.2. The contributions of the paper are twofold. (1) We demonstrate that the unilateral authentication protocol suffers from privacy weakness. That is, the attacker is able to identify the target Bluetooth-enabled device once he observed the device’s previous transmitted messages during the protocol run. More importantly, we analyze the privacy threat of the Bluetooth MCS, when the attacker exploits the proposed privacy weakness under the typical Internet of Things (IoT) scenarios. (2) An improved unilateral authentication protocol is therefore devised to repair the weakness. Under our formal privacy model, the improved protocol provably solves the traceability problem of the original protocol in the Bluetooth standard. Additionally, the improved protocol can be easily adapted to the Bluetooth standards because it merely employs the basic cryptographic components available in the standard specifications. In addition, we also suggest and evaluate two countermeasures, which do not need to modify the original protocol.


Sign in / Sign up

Export Citation Format

Share Document