Nodes localization in sensor networks based on vectors and particle swarm optimization

Author(s):  
Yu-feng Wang ◽  
Yan Wang ◽  
Chao-yi Mu
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
Vol 14 (1) ◽  
pp. 270-280
Author(s):  
Abhijit Halkai ◽  
◽  
Sujatha Terdal ◽  

A sensor network operates wirelessly and transmits detected information to the base station. The sensor is a small sized device, it is battery-powered with some electrical components, and the protocols should operate efficiently in such least resource availability. Here, we propose a novel improved framework in large scale applications where the huge numbers of sensors are distributed over an area. The designed protocol will address the issues that arise during its communication and give a consistent seamless communication system. The process of reasoning and learning in cognitive sensors guarantees data delivery in the network. Localization in Scarce and dense sensor networks is achieved by efficient cluster head election and route selection which are indeed based on cognition, improved Particle Swarm Optimization, and improved Ant Colony Optimization algorithms. Factors such as mobility, use of sensor buffer, power management, and defects in channels have been identified and solutions are presented in this research to build an accurate path based on the network context. The achieved results in extensive simulation prove that the proposed scheme outperforms ESNA, NETCRP, and GAECH algorithms in terms of Delay, Network lifetime, Energy consumption.


Sign in / Sign up

Export Citation Format

Share Document