A hierachical configuration system for a massively parallel neural hardware platform

Author(s):  
Francesco Galluppi ◽  
Sergio Davies ◽  
Alexander Rast ◽  
Thomas Sharp ◽  
Luis A. Plana ◽  
...  
2021 ◽  
Vol 11 (2) ◽  
pp. 25
Author(s):  
Evelina Forno ◽  
Alessandro Salvato ◽  
Enrico Macii ◽  
Gianvito Urgese

SpiNNaker is a neuromorphic hardware platform, especially designed for the simulation of Spiking Neural Networks (SNNs). To this end, the platform features massively parallel computation and an efficient communication infrastructure based on the transmission of small packets. The effectiveness of SpiNNaker in the parallel execution of the PageRank (PR) algorithm has been tested by the realization of a custom SNN implementation. In this work, we propose a PageRank implementation fully realized with the MPI programming paradigm ported to the SpiNNaker platform. We compare the scalability of the proposed program with the equivalent SNN implementation, and we leverage the characteristics of the PageRank algorithm to benchmark our implementation of MPI on SpiNNaker when faced with massive communication requirements. Experimental results show that the algorithm exhibits favorable scaling for a mid-sized execution context, while highlighting that the performance of MPI-PageRank on SpiNNaker is bounded by memory size and speed limitations on the current version of the hardware.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Christoph Starke ◽  
Vasco Grossmann ◽  
Lars Wienbrandt ◽  
Sven Koschnicke ◽  
John Carstens ◽  
...  

The hardware structure of a processing element used for optimization of an investment strategy for financial markets is presented. It is shown how this processing element can be multiply implemented on the massively parallel FPGA-machine RIVYERA. This leads to a speedup of a factor of about 17,000 in comparison to one single high-performance PC, while saving more than 99% of the consumed energy. Furthermore, it is shown for a special security and different time periods that the optimized investment strategy delivers an outperformance between 2 and 14 percent in relation to a buy and hold strategy.


2019 ◽  
Author(s):  
Frédéric Célerse ◽  
Louis Lagardere ◽  
Étienne Derat ◽  
Jean-Philip Piquemal

This paper is dedicated to the massively parallel implementation of Steered Molecular Dynamics in the Tinker-HP softwtare. It allows for direct comparisons of polarizable and non-polarizable simulations of realistic systems.


2019 ◽  
Author(s):  
Frédéric Célerse ◽  
Louis Lagardere ◽  
Étienne Derat ◽  
Jean-Philip Piquemal

This paper is dedicated to the massively parallel implementation of Steered Molecular Dynamics in the Tinker-HP softwtare. It allows for direct comparisons of polarizable and non-polarizable simulations of realistic systems.


Sign in / Sign up

Export Citation Format

Share Document