scholarly journals Localized delaunay refinement for piecewise-smooth complexes

Author(s):  
Tamal Krishna Dey ◽  
Andrew G. Slatton
2008 ◽  
Vol 43 (1) ◽  
pp. 121-166 ◽  
Author(s):  
Siu-Wing Cheng ◽  
Tamal K. Dey ◽  
Edgar A. Ramos

2011 ◽  
Vol 21 (05) ◽  
pp. 571-594 ◽  
Author(s):  
SERGE GOSSELIN ◽  
CARL OLLIVIER-GOOCH

This article presents an algorithm to construct constrained Delaunay tetrahedralizations of geometric domains bounded by piecewise smooth surfaces. Meshes are built from the bottom-up by first discretizing the boundary curves and then by sampling the smooth surfaces. The sampling procedure refines the Delaunay triangulation restricted to these surfaces, targeting topological violations and poor quality triangles. Unlike previously published algorithms adopting a similar approach, we propose to sample each smooth surface patch independently. This obviates the need for a boundary protection scheme around small dihedral angles in the input and can also lead to coarser constraining triangulations. Starting from a Delaunay tetrahedralization of the point samples, a combination of mesh reconfigurations and vertex insertions is then used to obtain a tetrahedralization constrained to the boundary surfaces. The algorithm is designed to produce tetrahedralizations that can be used in conjunction with a Delaunay refinement algorithm implemented on a Bowyer-Watson framework.


Author(s):  
S. Jelbart ◽  
K. U. Kristiansen ◽  
P. Szmolyan ◽  
M. Wechselberger

AbstractSingular exponential nonlinearities of the form $$e^{h(x)\epsilon ^{-1}}$$ e h ( x ) ϵ - 1 with $$\epsilon >0$$ ϵ > 0 small occur in many different applications. These terms have essential singularities for $$\epsilon =0$$ ϵ = 0 leading to very different behaviour depending on the sign of h. In this paper, we consider two prototypical singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable normalization for both systems such that the $$\epsilon \rightarrow 0$$ ϵ → 0 limit is a piecewise smooth system. The convergence to this nonsmooth system is exponential due to the nonlinearities we study. By working on the two model systems we use a blow-up approach to demonstrate that this exponential convergence can be harmless in some cases while in other scenarios it can lead to further degeneracies. For our second model system, we deal with such degeneracies due to exponentially small terms by extending the space dimension, following the approach in Kristiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of (unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity properties.


Meccanica ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1885-1902
Author(s):  
Yang Liu ◽  
Joseph Páez Chávez ◽  
Jiajia Zhang ◽  
Jiyuan Tian ◽  
Bingyong Guo ◽  
...  

Abstract The vibro-impact capsule system has been studied extensively in the past decade because of its research challenges as a piecewise-smooth dynamical system and broad applications in engineering and healthcare technologies. This paper reports our team’s first attempt to scale down the prototype of the vibro-impact capsule to millimetre size, which is 26 mm in length and 11 mm in diameter, aiming for small-bowel endoscopy. Firstly, an existing mathematical model of the prototype and its mathematical formulation as a piecewise-smooth dynamical system are reviewed in order to carry out numerical optimisation for the prototype by means of path-following techniques. Our numerical analysis shows that the prototype can achieve a high progression speed up to 14.4 mm/s while avoiding the collision between the inner mass and the capsule which could lead to less propulsive force on the capsule so causing less discomfort on the patient. Secondly, the experimental rig and procedure for testing the prototype are introduced, and some preliminary experimental results are presented. Finally, experimental results are compared with the numerical results to validate the optimisation as well as the feasibility of the vibro-impact technique for the potential of a controllable endoscopic procedure.


Sign in / Sign up

Export Citation Format

Share Document