A power manager with balanced quality of service for energy-harvesting wireless sensor nodes

Author(s):  
Trong Nhan Le ◽  
Alain Pegatoquet ◽  
Olivier Berder ◽  
Olivier Sentieys

The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


Author(s):  
Sanatan Mohanty ◽  
Sarat Kumar Patra

Wireless Sensor Network (WSN) consists of many tiny, autonomous sensor nodes capable of sensing, computation and communication. The main objective of IEEE 802.15.4 based WSN standard is to provide low cost, low power and short range communication. Providing QoS in WSN is a challenging task due to its severe resource constraints in terms of energy, network bandwidth, memory, and CPU. In this chapter, Quality of Service (QoS) performance evaluation has been carried out for IEEE 802.15.4 networks based WSN star and mesh topology using routing protocols like AODV, DSR and DYMO in QualNet 4.5 simulator. Performance evaluations metrics like Packet Delivery Ratio (PDR), throughput, average end to end delay, energy per goodput bit, network lifetime of battery model and total energy consumption which includes transmission, reception, idle and sleep mode were considered for both the topology. From the simulation studies and analysis, it can be seen that on an average DSR and DYMO performs better than AODV for different traffic load rates.


Sign in / Sign up

Export Citation Format

Share Document