scholarly journals Applications of discrete event simulation in the design of automotive powertrain manufacturing systems

Author(s):  
Arun Jayaraman ◽  
Ali K. Gunal
2016 ◽  
Vol 9 (2) ◽  
pp. 432 ◽  
Author(s):  
Todd Frazee ◽  
Charles Standridge

Purpose: Few studies comparing manufacturing control systems as they relate to high-mix, low-volume applications have been reported. This paper compares two strategies, constant work in process (CONWIP) and Paired-cell Overlapping Loops of Cards with Authorization (POLCA), for controlling work in process (WIP) in such a manufacturing environment. Characteristics of each control method are explained in regards to lead time impact and thus, why one may be advantageous over the other.Design/methodology/approach: An industrial system in the Photonics industry is studied. Discrete event simulation is used as the primary tool to compare performance of CONWIP and POLCA controls for the same WIP level with respect to lead time. Model verification and validation are accomplished by comparing historic data to simulation generated data including utilizations. Both deterministic and Poisson distributed order arrivals are considered. Findings: For the system considered in this case study, including order arrival patterns, a POLCA control can outperform a CONWIP parameter in terms of average lead time for a given level of WIP. At higher levels of WIP, the performance of POLCA and CONWIP is equivalent. Practical Implications: The POLCA control helps limit WIP in specific áreas of the system where the CONWIP control only limits the overall WIP in the system. Thus, POLCA can generate acceptably low lead times at lower levels of WIP for conditions equivalent to the HMLV manufacturing systems studied.Originality/value: The study compliments and extends previous studies of  CONWIP and POLCA performance to a HMLV manufacturing environment. It demonstrates the utility of discrete event simulation in that regard. It shows that proper inventory controls in bottleneck áreas of a system can reduce average lead time.


2012 ◽  
Vol 502 ◽  
pp. 7-12 ◽  
Author(s):  
L.P. Ferreira ◽  
E. Ares ◽  
G. Peláez ◽  
M. Marcos ◽  
M. Araújo

This paper proposes a methodology to analyze complex manufacturing systems, based on discrete-event simulation models. The methodology was validated by performing different simulation experiments and will be applied to a multistage multiproduct production line, based on a real case, with a closed-loop network configuration of machines and intermediate buffers consisting of conveyors, which is very common in the automobile sector. A simulation model in an Arena environment was developed, which allowed for an analysis of the important aspects not yet studied in specialized literature, namely the assessment of the impact of the production sequence on the automobile assembly line. Various sequence rules were analyzed and the performance of each of the corresponding simulation models was registered.


2003 ◽  
Vol 02 (01) ◽  
pp. 71-87 ◽  
Author(s):  
A. OYARBIDE ◽  
T. S. BAINES ◽  
J. M. KAY ◽  
J. LADBROOK

Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility.


Sign in / Sign up

Export Citation Format

Share Document