Hierarchical Community-Level Information Diffusion Modeling in Social Networks

Author(s):  
Yuan Zhang ◽  
Tianshu Lyu ◽  
Yan Zhang
2023 ◽  
Vol 55 (1) ◽  
pp. 1-51
Author(s):  
Huacheng Li ◽  
Chunhe Xia ◽  
Tianbo Wang ◽  
Sheng Wen ◽  
Chao Chen ◽  
...  

Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data mining. Practically, diffusion modeling provides fundamental support for many downstream applications (e.g., public opinion monitoring, rumor source identification, and viral marketing). Tremendous efforts have been devoted to this area to understand and quantify information diffusion dynamics. This survey investigates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified information diffusion concept in terms of three components: information, user decision, and social vectors, followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of comparative studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods, and pros and cons. We further summarized representative diffusion modeling in special scenarios and significant downstream tasks based on these elementary models. Finally, open issues in this field following the methodology of diffusion modeling are discussed.


2016 ◽  
Vol 15 (5) ◽  
pp. 1292-1304 ◽  
Author(s):  
Zongqing Lu ◽  
Yonggang Wen ◽  
Weizhan Zhang ◽  
Qinghua Zheng ◽  
Guohong Cao

2021 ◽  
Author(s):  
Syeda Nadia Firdaus

Social network is a hot topic of interest for researchers in the field of computer science in recent years. These social networks such as Facebook, Twitter, Instagram play an important role in information diffusion. Social network data are created by its users. Users’ online activities and behavior have been studied in various past research efforts in order to get a better understanding on how information is diffused on social networks. In this study, we focus on Twitter and we explore the impact of user behavior on their retweet activity. To represent a user’s behavior for predicting their retweet decision, we introduce 10-dimentional emotion and 35-dimensional personality related features. We consider the difference of a user being an author and a retweeter in terms of their behaviors, and propose a machine learning based retweet prediction model considering this difference. We also propose two approaches for matrix factorization retweet prediction model which learns the latent relation between users and tweets to predict the user’s retweet decision. In the experiment, we have tested our proposed models. We find that models based on user behavior related features provide good improvement (3% - 6% in terms of F1- score) over baseline models. By only considering user’s behavior as a retweeter, the data processing time is reduced while the prediction accuracy is comparable to the case when both retweeting and posting behaviors are considered. In the proposed matrix factorization models, we include tweet features into the basic factorization model through newly defined regularization terms and improve the performance by 3% - 4% in terms of F1-score. Finally, we compare the performance of machine learning and matrix factorization models for retweet prediction and find that none of the models is superior to the other in all occasions. Therefore, different models should be used depending on how prediction results will be used. Machine learning model is preferable when a model’s performance quality is important such as for tweet re-ranking and tweet recommendation. Matrix factorization is a preferred option when model’s positive retweet prediction capability is more important such as for marketing campaign and finding potential retweeters.


Sign in / Sign up

Export Citation Format

Share Document