On the Effectiveness of Distance Measures for Similarity Search in Multi-Variate Sensory Data

Author(s):  
Yash Garg ◽  
Silvestro Roberto Poccia
2021 ◽  
Vol 15 (4) ◽  
pp. 1-27
Author(s):  
Daokun Zhang ◽  
Jie Yin ◽  
Xingquan Zhu ◽  
Chengqi Zhang

Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this article, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations using a stochastic gradient descent-based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of the BinaryNE algorithm is available at https://github.com/daokunzhang/BinaryNE.


2009 ◽  
Vol 20 (10) ◽  
pp. 2867-2884 ◽  
Author(s):  
Feng WU ◽  
Yan ZHONG ◽  
Quan-Yuan WU ◽  
Yan JIA ◽  
Shu-Qiang YANG

2020 ◽  
Vol 16 (4) ◽  
pp. 473-485
Author(s):  
David Mary Rajathei ◽  
Subbiah Parthasarathy ◽  
Samuel Selvaraj

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.


Author(s):  
Linda-Ruth Salter

Linda-Ruth Salter deals with the ways in which hearing contributes to the realities we create and within which we live. Discussing different cognitive theories and findings from neuroscience, she details how sensory data—specifically auditory stimuli—are processed, and how this processing activates imagination in determining who we are, how we are, and where we are. Reality, Salter argues, is a cognitive construct. Hearing plays a significant part in forming that reality—for example, by guiding our attention to certain stimuli rather than others—and it further helps us to successfully inhabit our constructed reality.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jimena Olveres ◽  
Erik Carbajal-Degante ◽  
Boris Escalante-Ramírez ◽  
Enrique Vallejo ◽  
Carla María García-Moreno

Segmentation tasks in medical imaging represent an exhaustive challenge for scientists since the image acquisition nature yields issues that hamper the correct reconstruction and visualization processes. Depending on the specific image modality, we have to consider limitations such as the presence of noise, vanished edges, or high intensity differences, known, in most cases, as inhomogeneities. New algorithms in segmentation are required to provide a better performance. This paper presents a new unified approach to improve traditional segmentation methods as Active Shape Models and Chan-Vese model based on level set. The approach introduces a combination of local analysis implementations with classic segmentation algorithms that incorporates local texture information given by the Hermite transform and Local Binary Patterns. The mixture of both region-based methods and local descriptors highlights relevant regions by considering extra information which is helpful to delimit structures. We performed segmentation experiments on 2D images including midbrain in Magnetic Resonance Imaging and heart’s left ventricle endocardium in Computed Tomography. Quantitative evaluation was obtained with Dice coefficient and Hausdorff distance measures. Results display a substantial advantage over the original methods when we include our characterization schemes. We propose further research validation on different organ structures with promising results.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 436
Author(s):  
Ruirui Zhao ◽  
Minxia Luo ◽  
Shenggang Li

Picture fuzzy sets, which are the extension of intuitionistic fuzzy sets, can deal with inconsistent information better in practical applications. A distance measure is an important mathematical tool to calculate the difference degree between picture fuzzy sets. Although some distance measures of picture fuzzy sets have been constructed, there are some unreasonable and counterintuitive cases. The main reason is that the existing distance measures do not or seldom consider the refusal degree of picture fuzzy sets. In order to solve these unreasonable and counterintuitive cases, in this paper, we propose a dynamic distance measure of picture fuzzy sets based on a picture fuzzy point operator. Through a numerical comparison and multi-criteria decision-making problems, we show that the proposed distance measure is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document