Distributed Algorithm for Balanced VM Placement for Heterogeneous Cloud Data Centers

Author(s):  
Yashwant Singh Patel ◽  
Rajiv Misra
2018 ◽  
Vol 173 ◽  
pp. 03092
Author(s):  
Bo Li ◽  
Yun Wang

Virtual machine placement is the process of selecting the most suitable server in large cloud data centers to deploy newly-created VMs. Traditional load balancing or energy-aware VM placement approaches either allocate VMs to PMs in centralized manner or ignore PM’s cost-capacity ratio to implement energy-aware VM placement. We address these two issues by introducing a distributed VM placement approach. A auction-based VM placement algorithm is devised for help VM to find the most suitable server in large heterogeneous cloud data centers. Our algorithm is evaluated by simulation. Experimental results show two major improvements over the existing approaches for VM placement. First, our algorithm efficiently balances the utilization of multiple types of resource by minimizing the amount of physical servers used. Second, it reduces system cost compared with existing approaches in heterogeneous environment.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


Sign in / Sign up

Export Citation Format

Share Document