scholarly journals A domain-specific architecture for deep neural networks

2018 ◽  
Vol 61 (9) ◽  
pp. 50-59 ◽  
Author(s):  
Norman P. Jouppi ◽  
Cliff Young ◽  
Nishant Patil ◽  
David Patterson
2020 ◽  
Vol 34 (04) ◽  
pp. 5462-5469
Author(s):  
Goutham Ramakrishnan ◽  
Yun Chan Lee ◽  
Aws Albarghouthi

When a model makes a consequential decision, e.g., denying someone a loan, it needs to additionally generate actionable, realistic feedback on what the person can do to favorably change the decision. We cast this problem through the lens of program synthesis, in which our goal is to synthesize an optimal (realistically cheapest or simplest) sequence of actions that if a person executes successfully can change their classification. We present a novel and general approach that combines search-based program synthesis and test-time adversarial attacks to construct action sequences over a domain-specific set of actions. We demonstrate the effectiveness of our approach on a number of deep neural networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingjie Li ◽  
Ruiyang Chen ◽  
Berardi Sensale-Rodriguez ◽  
Weilu Gao ◽  
Cunxi Yu

AbstractDeep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D2NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D22NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D2NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.


Author(s):  
Xiao Ding ◽  
Bibo Cai ◽  
Ting Liu ◽  
Qiankun Shi

Identifying user consumption intention from social media is of great interests to downstream applications. Since such task is domain-dependent, deep neural networks have been applied to learn transferable features for adapting models from a source domain to a target domain. A basic idea to solve this problem is reducing the distribution difference between the source domain and the target domain such that the transfer error can be bounded. However, the feature transferability drops dramatically in higher layers of deep neural networks with increasing domain discrepancy. Hence, previous work has to use a few target domain annotated data to train domain-specific layers. In this paper, we propose a deep transfer learning framework for consumption intention identification, to reduce the data bias and enhance the transferability in domain-specific layers. In our framework, the representation of the domain-specific layer is mapped to a reproducing kernel Hilbert space, where the mean embeddings of different domain distributions can be explicitly matched. By using an optimal tree kernel method for measuring the mean embedding matching, the domain discrepancy can be effectively reduced. The framework can learn transferable features in a completely unsupervised manner with statistical guarantees. Experimental results on five different domain datasets show that our approach dramatically outperforms state-of-the-art baselines, and it is general enough to be applied to more scenarios. The source code and datasets can be found at http://ir.hit.edu.cn/$\scriptsize{\sim}$xding/index\_english.htm.


2020 ◽  
Vol 63 (7) ◽  
pp. 67-78 ◽  
Author(s):  
Norman P. Jouppi ◽  
Doe Hyun Yoon ◽  
George Kurian ◽  
Sheng Li ◽  
Nishant Patil ◽  
...  

Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document