Ensemble deep neural networks for domain-specific Image Recognition

Author(s):  
Wenbo Li ◽  
Chuan Ke
2020 ◽  
Vol 34 (04) ◽  
pp. 5462-5469
Author(s):  
Goutham Ramakrishnan ◽  
Yun Chan Lee ◽  
Aws Albarghouthi

When a model makes a consequential decision, e.g., denying someone a loan, it needs to additionally generate actionable, realistic feedback on what the person can do to favorably change the decision. We cast this problem through the lens of program synthesis, in which our goal is to synthesize an optimal (realistically cheapest or simplest) sequence of actions that if a person executes successfully can change their classification. We present a novel and general approach that combines search-based program synthesis and test-time adversarial attacks to construct action sequences over a domain-specific set of actions. We demonstrate the effectiveness of our approach on a number of deep neural networks.


2020 ◽  
Author(s):  
Soma Nonaka ◽  
Kei Majima ◽  
Shuntaro C. Aoki ◽  
Yukiyasu Kamitani

SummaryAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on the decoding of individual DNN unit activations from human brain activity. We find that BH scores for 29 pretrained DNNs with varying architectures are negatively correlated with image recognition performance, indicating that recently developed high-performance DNNs are not necessarily brain-like. Experimental manipulations of DNN models suggest that relatively simple feedforward architecture with broad spatial integration is critical to brain-like hierarchy. Our method provides new ways for designing DNNs and understanding the brain in consideration of their representational homology.


2018 ◽  
Vol 28 (4) ◽  
pp. 735-744 ◽  
Author(s):  
Michał Koziarski ◽  
Bogusław Cyganek

Abstract Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected.


Author(s):  
Anna Ilina ◽  
Vladimir Korenkov

The task of counting the number of people is relevant when conducting various types of events, which may include seminars, lectures, conferences, meetings, etc. Instead of monotonous manual counting of participants, it is much more effective to use facial recognition technology, which makes it possible not only to quickly count those present, but also to recognize each of them, which makes it possible to conduct further analysis of this data, identify patterns in them and predict. The research conducted in this paper determines the quality assessment of the use of facial recognition technology in images andvideo streams, based on the use of a deep neural network, to solve the problem of automating attendance tracking.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingjie Li ◽  
Ruiyang Chen ◽  
Berardi Sensale-Rodriguez ◽  
Weilu Gao ◽  
Cunxi Yu

AbstractDeep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D2NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D22NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D2NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anand Ramachandran ◽  
Steven S. Lumetta ◽  
Eric W. Klee ◽  
Deming Chen

Abstract Background Modern Next Generation- and Third Generation- Sequencing methods such as Illumina and PacBio Circular Consensus Sequencing platforms provide accurate sequencing data. Parallel developments in Deep Learning have enabled the application of Deep Neural Networks to variant calling, surpassing the accuracy of classical approaches in many settings. DeepVariant, arguably the most popular among such methods, transforms the problem of variant calling into one of image recognition where a Deep Neural Network analyzes sequencing data that is formatted as images, achieving high accuracy. In this paper, we explore an alternative approach to designing Deep Neural Networks for variant calling, where we use meticulously designed Deep Neural Network architectures and customized variant inference functions that account for the underlying nature of sequencing data instead of converting the problem to one of image recognition. Results Results from 27 whole-genome variant calling experiments spanning Illumina, PacBio and hybrid Illumina-PacBio settings suggest that our method allows vastly smaller Deep Neural Networks to outperform the Inception-v3 architecture used in DeepVariant for indel and substitution-type variant calls. For example, our method reduces the number of indel call errors by up to 18%, 55% and 65% for Illumina, PacBio and hybrid Illumina-PacBio variant calling respectively, compared to a similarly trained DeepVariant pipeline. In these cases, our models are between 7 and 14 times smaller. Conclusions We believe that the improved accuracy and problem-specific customization of our models will enable more accurate pipelines and further method development in the field. HELLO is available at https://github.com/anands-repo/hello


2018 ◽  
Vol 61 (9) ◽  
pp. 50-59 ◽  
Author(s):  
Norman P. Jouppi ◽  
Cliff Young ◽  
Nishant Patil ◽  
David Patterson

Sign in / Sign up

Export Citation Format

Share Document