A Smart IoT-Based Irrigation System with Automated Plant Recognition using Deep Learning

Author(s):  
Jessica Kwok ◽  
Yu Sun
Author(s):  
Yi Chung ◽  
Chih-Ang Chou ◽  
Chih-Yang Li

Identifying plants is not only the job of professionals, but also useful or essential for the plant lover and the general public. Although deep learning approaches for plant recognition are promising, driven by the success of convolutional neural networks (CNN), their performances are still far from the requirements of an in-field scenario. First, we propose a central attention concept that helps focus on the target instead of backgrounds in the image for tree species recognition. It could prevent model training from confused vision by establishing a dual path CNN deep learning framework, in which the central attention model combined with the CNN model based on InceptionV3 were employed to automatically extract the features. These two models were then learned together with a shared classification layer. Experimental results assessed the effectiveness of our proposed approach which outperformed each uni-path alone, and existing methods in the whole plant recognition system. Additionally, we created our own tree image database where each photo contained a wealth of information on the entire tree instead of an individual plant organ. Lastly, we developed a prototype system of an online/offline available tree species identification working on a consumer mobile platform that can identify the tree species not only by image recognition, but also detection and classification in real-time remotely.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 212
Author(s):  
Maira Sami ◽  
Saad Qasim Khan ◽  
Muhammad Khurram ◽  
Muhammad Umar Farooq ◽  
Rukhshanda Anjum ◽  
...  

The use of Internet of things (IoT)-based physical sensors to perceive the environment is a prevalent and global approach. However, one major problem is the reliability of physical sensors’ nodes, which creates difficulty in a real-time system to identify whether the physical sensor is transmitting correct values or malfunctioning due to external disturbances affecting the system, such as noise. In this paper, the use of Long Short-Term Memory (LSTM)-based neural networks is proposed as an alternate approach to address this problem. The proposed solution is tested for a smart irrigation system, where a physical sensor is replaced by a neural sensor. The Smart Irrigation System (SIS) contains several physical sensors, which transmit temperature, humidity, and soil moisture data to calculate the transpiration in a particular field. The real-world values are taken from an agriculture field, located in a field of lemons near the Ghadap Sindh province of Pakistan. The LM35 sensor is used for temperature, DHT-22 for humidity, and we designed a customized sensor in our lab for the acquisition of moisture values. The results of the experiment show that the proposed deep learning-based neural sensor predicts the real-time values with high accuracy, especially the temperature values. The humidity and moisture values are also in an acceptable range. Our results highlight the possibility of using a neural network, referred to as a neural sensor here, to complement the functioning of a physical sensor deployed in an agriculture field in order to make smart irrigation systems more reliable.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


Sign in / Sign up

Export Citation Format

Share Document