scholarly journals An Experimental Analysis to Check Accuracy of DGA.....

10.29007/dldg ◽  
2018 ◽  
Author(s):  
Jatinkumar Soni ◽  
Dhaval Suthar

Analysis of Dissolved gas method is very sensitive and reliable method for detection of internal fault in power transformer. One of the most used method for DGA is duval triangle method. Duval triangle is not considering two combustible gases like, ethane so, Duval triangle method has low accuracy for fault interpretation. Then, Duval pentagonal method is used for fault detection in power transformer. In this paper, we have get data for power transformer from Torrent Power Ltd. This experiment has done on various 20 power transformer rating of 15MVA,21kV/400kV. But, In this paper, We have shown six data of fault in case study and found fault by Duval Triangle method and Duval pentagonal method. Then, we will verify this fault interpretation with actual fault. And, we will see that Duval Pentagonal method have higher accuracy (above 80%) for fault interpretation.

2014 ◽  
Vol 535 ◽  
pp. 157-161
Author(s):  
Jeeng Min Ling ◽  
Ming Jong Lin ◽  
Chao Tang Yu

Dissolved gas analysis (DGA) is an effective tool for detecting incipient faults in power transformers. The ANSI/IEEE C57.104 standards, the most popular guides for the interpretation of gases generated in oil-immersed transformers, and the IEC-Duval triangle method are integrated to develop the proposed power transformer fault diagnosis method. The key dissolved gases, including H2, CH4, C2H2, C2H4, C2H6, and total combustible gases (TCG), suggested by ASTM D3612s instruction for DGA is investigated. The tested data of the transformer oil were taken from the substations of Taiwan Power Company. Diagnosis results with the text form called IEC-Duval triangle method show the validation and accuracy to detect the incipient fault in the power transformer.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6713
Author(s):  
Tomasz Piotrowski ◽  
Pawel Rozga ◽  
Ryszard Kozak ◽  
Zbigniew Szymanski

The article describes a case study when the voltage collapse during lightning impulse tests of new power transformers was noticed and when the repeated tests finished with a positive result. The step-by-step process of reaching the conclusion on the basis of dissolved gas analysis (DGA) as a key method of the investigations was presented. The considerations on the possible source of the analysis showed that the Duval triangle method, used in the analysis of the concentration of gases dissolved in oil samples taken from bushings, more reliably and unambiguously than the ratio method recommended in the IEC 60599 Standard, indicated a phenomenon which was identified in the insulation structure of bushings analyzed. Additionally, the results from DGA were found to be consistent with an internal inspection of bushings, which showed a visible trace of discharge on the inside part of the epoxy housing, as a result of the lightning induced breakdown.


Author(s):  
Mohammed Misbahul Islam ◽  
Mrs. Madhu Upadhyay

The method of fault diagnosis based on dissolved gas analysis (DGA) is of great importance to detect possible failures in the transformer and to improve the safety of the electrical system. The DGA data of the transformer in the smart grid has the characteristics of a large amount, different types and a low density of values. Since the power transformer is an important type of power supply in the electrical network, this document provides a complete overview of the power transformer and describes how to diagnose faults. Furthermore, on-line monitoring, the method of fault diagnosis and condition-based maintenance strategy decision-making method as also have been described. The paper presents detailed literature on the recent advancements and methods being adopted by various authors on fault detection.


2013 ◽  
Vol 845 ◽  
pp. 554-558
Author(s):  
Mohd Radzian A. Rahman ◽  
Mohd Iqbal Ridwan

The monitoring of dissolved combustible gases in power transformer oil could enable early detection of disastrous fault. The conventional dissolved gases in oil monitoring activities have these characteristic: 1) periodically sampling and 2) manual interpretation of combustible gases. However, periodical sampling increases number of undetected fault due to long sampling interval and manual interpretation of dissolved gas is often too complex for system operator to digest, resulting in reduced reliability of the power system and lack of situational awareness. To enhance the condition based monitoring activities for power transformer; TNB Research is embarking on online monitoring and knowledge-based system research project to address both issues related to periodical sampling method. This paper outlines the conceptual framework of the research project which was recently approved. It includes (1) the system architecture of the online monitoring system, (2) brief explanation of the mechanism of photo-acoustic spectroscopy, (3) the engineering system situational awareness framework which integrates different levels of automation and (4) blocks of knowledge sources theory used in modeling the engineering system.


Energetika ◽  
2017 ◽  
Vol 63 (2) ◽  
Author(s):  
Ruta Liepniece ◽  
Sandra Vitolina ◽  
Janis Marks

To maintain the reliability of power transmission it is important to detect the incipient fault of power transformer as early as possible. If the fault of a power transformer is not detected promptly, it can evolve resulting in high repair costs or even failure of the power transformer and decreasing reliability of power transmission. The most commonly used method for power transformer fault detection is the dissolved gas analysis (DGA) of transformer oil. Various methods have been developed to interpret the data of dissolved gas analysis, but not many are applicable for the detection of the incipient fault. The detection of the incipient fault of a power transformer is included in both IEEE C57.104-2008 “Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers” and Standard of Latvian Electrotechnical Committee LEK 118 “Transformer Oil Inspection Standards”. In both standards, the limits of dissolved gases in transformer oil are divided into levels, each corresponding to different technical conditions of the power transformer including the level that indicates the incipient fault. However, these approaches vary to a great degree – one approach mostly indicates that transformers are in good condition with several cases that must be additionally evaluated, but the second approach mostly results in warning about the incipient fault, which must be confirmed by additional evaluation. The objective of this paper is to determine the most suitable approach to detect the incipient fault of power transformers. A case study is provided, which includes analysis of DGA data of 48 power transformers installed in the transmission network in Latvia with both methodologies mentioned above for detecting the incipient fault.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2223 ◽  
Author(s):  
Sayed A. Ward ◽  
Adel El-Faraskoury ◽  
Mohamed Badawi ◽  
Shimaa A. Ibrahim ◽  
Karar Mahmoud ◽  
...  

Power transformers are considered important and expensive items in electrical power networks. In this regard, the early discovery of potential faults in transformers considering datasets collected from diverse sensors can guarantee the continuous operation of electrical systems. Indeed, the discontinuity of these transformers is expensive and can lead to excessive economic losses for the power utilities. Dissolved gas analysis (DGA), as well as partial discharge (PD) tests considering different intelligent sensors for the measurement process, are used as diagnostic techniques for detecting the oil insulation level. This paper includes two parts; the first part is about the integration among the diagnosis results of recognized dissolved gas analysis techniques, in this part, the proposed techniques are classified into four techniques. The integration between the different DGA techniques not only improves the oil fault condition monitoring but also overcomes the individual weakness, and this positive feature is proved by using 532 samples from the Egyptian Electricity Transmission Company (EETC). The second part overview the experimental setup for (66/11.86 kV–40 MVA) power transformer which exists in the Egyptian Electricity Transmission Company (EETC), the first section in this part analyzes the dissolved gases concentricity for many samples, and the second section illustrates the measurement of PD particularly in this case study. The results demonstrate that precise interpretation of oil transformers can be provided to system operators, thanks to the combination of the most appropriate techniques.


Sign in / Sign up

Export Citation Format

Share Document