scholarly journals Network Embedding Based Recommendation Method in Social Networks

Author(s):  
Yufei Wen ◽  
Lei Guo ◽  
Zhumin Chen ◽  
Jun Ma
2022 ◽  
Vol 40 (2) ◽  
pp. 1-23
Author(s):  
Sheng Zhou ◽  
Xin Wang ◽  
Martin Ester ◽  
Bolang Li ◽  
Chen Ye ◽  
...  

User recommendation aims at recommending users with potential interests in the social network. Previous works have mainly focused on the undirected social networks with symmetric relationship such as friendship, whereas recent advances have been made on the asymmetric relationship such as the following and followed by relationship. Among the few existing direction-aware user recommendation methods, the random walk strategy has been widely adopted to extract the asymmetric proximity between users. However, according to our analysis on real-world directed social networks, we argue that the asymmetric proximity captured by existing random walk based methods are insufficient due to the inbalance in-degree and out-degree of nodes. To tackle this challenge, we propose InfoWalk, a novel informative walk strategy to efficiently capture the asymmetric proximity solely based on random walks. By transferring the direction information into the weights of each step, InfoWalk is able to overcome the limitation of edges while simultaneously maintain both the direction and proximity. Based on the asymmetric proximity captured by InfoWalk, we further propose the qualitative (DNE-L) and quantitative (DNE-T) directed network embedding methods, capable of preserving the two properties in the embedding space. Extensive experiments conducted on six real-world benchmark datasets demonstrate the superiority of the proposed DNE model over several state-of-the-art approaches in various tasks.


2018 ◽  
Vol 22 (6) ◽  
pp. 2611-2632 ◽  
Author(s):  
Yaqing Wang ◽  
Chunyan Feng ◽  
Ling Chen ◽  
Hongzhi Yin ◽  
Caili Guo ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 23595-23605 ◽  
Author(s):  
Li Liu ◽  
Youmin Zhang ◽  
Shun Fu ◽  
Fujin Zhong ◽  
Jun Hu ◽  
...  

Author(s):  
Daokun Zhang ◽  
Jie Yin ◽  
Xingquan Zhu ◽  
Chengqi Zhang

This paper addresses social network embedding, which aims to embed social network nodes, including user profile information, into a latent low-dimensional space. Most of the existing works on network embedding only consider network structure, but ignore user-generated content that could be potentially helpful in learning a better joint network representation. Different from rich node content in citation networks, user profile information in social networks is useful but noisy, sparse, and incomplete. To properly utilize this information, we propose a new algorithm called User Profile Preserving Social Network Embedding (UPP-SNE), which incorporates user profile with network structure to jointly learn a vector representation of a social network. The theme of UPP-SNE is to embed user profile information via a nonlinear mapping into a consistent subspace, where network structure is seamlessly encoded to jointly learn informative node representations. Extensive experiments on four real-world social networks show that compared to state-of-the-art baselines, our method learns better social network representations and achieves substantial performance gains in node classification and clustering tasks.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 254 ◽  
Author(s):  
Shaokai Wang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Shanshan Feng ◽  
Raymond Lau ◽  
...  

Presently, many users are involved in multiple social networks. Identifying the same user in different networks, also known as anchor link prediction, becomes an important problem, which can serve numerous applications, e.g., cross-network recommendation, user profiling, etc. Previous studies mainly use hand-crafted structure features, which, if not carefully designed, may fail to reflect the intrinsic structure regularities. Moreover, most of the methods neglect the attribute information of social networks. In this paper, we propose a novel semi-supervised network-embedding model to address the problem. In the model, each node of the multiple networks is represented by a vector for anchor link prediction, which is learnt with awareness of observed anchor links as semi-supervised information, and topology structure and attributes as input. Experimental results on the real-world data sets demonstrate the superiority of the proposed model compared to state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document