Long-Term Event Processing over Data Streams in Cyber-Physical Systems

2018 ◽  
Vol 2 (2) ◽  
pp. 1-23
Author(s):  
Ping Wang ◽  
Meng Ma ◽  
Chao-Hsien Chu
Logistics ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 23
Author(s):  
Cyril Alias ◽  
Frank Alarcón Olalla ◽  
Hauke Iwersen ◽  
Julius Ollesch ◽  
Bernd Noche

In the course of the ongoing era of digitization, cyber-physical systems and complex event processing belong to the most discussed technologies nowadays. The huge challenge that digitization is forming to the transportation and logistics sector is largely accepted by the responsible organizations. Despite initial steps being taken towards digitized value-creation, many professionals wonder about how to realize the ideas and stumble with the precise steps to be taken. With the vision of smart logistics in mind and cost-efficient technologies available, they require a systematic methodology to exploit the potentials accompanying digitization. With the help of an effective and targeted workshop procedure, potentially appropriate application areas with promising benefit potentials can be identified effectively. Such a workshop procedure needs to be a stepwise approach in order to carefully consider all the relevant aspects and to allow for organizational acceptance to grow. In three real-world use case examples from different areas of the transportation and logistics industry, promising applications of cyber-physical systems and complex event processing are identified and pertaining event patterns of critical situations developed in order to make realization easier at a later stage. Each use case example exhibits a frequently occurring problem that can be effectively addressed by using the above-mentioned technology.


Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Ankur Vora ◽  
Kyoung-Don Kang

In emerging Cyber-Physical Systems (CPS), the demand for higher communication performance and enhanced wireless connectivity is increasing fast. To address the issue, in our recent work, we proposed a dynamic programming algorithm with polynomial time complexity for effective cross-layer downlink Scheduling and Resource Allocation (SRA) considering the channel and queue state, while supporting fairness. In this paper, we extend the SRA algorithm to consider 5G use-cases, namely enhanced Machine Type Communication (eMTC), Ultra-Reliable Low Latency Communication (URLLC) and enhanced Mobile BroadBand (eMBB). In a simulation study, we evaluate the performance of our SRA algorithm in comparison to an advanced greedy cross-layer algorithm for eMTC, URLLC and LTE (long-term evolution). For eMTC and URLLC, our SRA method outperforms the greedy approach by up to 17.24%, 18.1%, 2.5% and 1.5% in terms of average goodput, correlation impact, goodput fairness and delay fairness, respectively. In the case of LTE, our approach outperforms the greedy method by 60%, 2.6% and 1.6% in terms of goodput, goodput fairness and delay fairness compared with tested baseline.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 52 ◽  
Author(s):  
Daniela Cancila ◽  
Jean-Louis Gerstenmayer ◽  
Huascar Espinoza ◽  
Roberto Passerone

Autonomous and Adaptative Cyber-Physical Systems (ACPS) represent a new knowledge frontier of converging “nano-bio-info-cogno” technologies and applications. ACPS have the ability to integrate new `mutagenic’ technologies, i.e., technologies able to cause mutations in the society. Emerging approaches, such as artificial intelligence techniques and deep learning, enable exponential speedups for supporting increasingly higher levels of autonomy and self-adaptation. In spite of this disruptive landscape, however, deployment and broader adoption of ACPS in safety-critical scenarios remains challenging. In this paper, we address some challenges that are stretching the limits of ACPS safety engineering, including tightly related aspects such as ethics and resilience. We argue that a paradigm change is needed that includes the entire socio-technical aspects, including trustworthiness, responsibility, liability, as well as the ACPS ability to learn from past events, anticipate long-term threads and recover from unexpected behaviors.


Sign in / Sign up

Export Citation Format

Share Document