scholarly journals Multi-task Representation Learning for Travel Time Estimation

Author(s):  
Yaguang Li ◽  
Kun Fu ◽  
Zheng Wang ◽  
Cyrus Shahabi ◽  
Jieping Ye ◽  
...  
Author(s):  
Sean Bin Yang ◽  
Chenjuan Guo ◽  
Jilin Hu ◽  
Jian Tang ◽  
Bin Yang

Path representations are critical in a variety of transportation applications, such as estimating path ranking in path recommendation systems and estimating path travel time in navigation systems. Existing studies often learn task-specific path representations in a supervised manner, which require a large amount of labeled training data and generalize poorly to other tasks. We propose an unsupervised learning framework Path InfoMax (PIM) to learn generic path representations that work for different downstream tasks. We first propose a curriculum negative sampling method, for each input path, to generate a small amount of negative paths, by following the principles of curriculum learning. Next, PIM employs mutual information maximization to learn path representations from both a global and a local view. In the global view, PIM distinguishes the representations of the input paths from those of the negative paths. In the local view, PIM distinguishes the input path representations from the representations of the nodes that appear only in the negative paths. This enables the learned path representations encode both global and local information at different scales. Extensive experiments on two downstream tasks, ranking score estimation and travel time estimation, using two road network datasets suggest that PIM significantly outperforms other unsupervised methods and is also able to be used as a pre-training method to enhance supervised path representation learning.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiming Gui ◽  
Haipeng Yu

Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for the travel time forecasting.


Author(s):  
Wen Zhang ◽  
Yang Wang ◽  
Xike Xie ◽  
Chuancai Ge ◽  
Hengchang Liu

Sign in / Sign up

Export Citation Format

Share Document