Risk evaluation of urban water distribution network pipes using neural network

Author(s):  
Yanying Yang ◽  
Yonghua Han ◽  
Jianchun Zheng ◽  
Jingjing Wang ◽  
Ming Zhao ◽  
...  
2011 ◽  
Vol 243-249 ◽  
pp. 5003-5008
Author(s):  
Zhi Tao Wang ◽  
Jing Yu Su ◽  
Wei Wang

To evaluate the security of urban water distribution network, one model based on LS-SVM was put forth. On the basis of summary and analysis of influential factors for urban water distribution network security, a set of indexes used in the evaluation model above was constructed. The nonlinear mapping between the water distribution networks security classification and its conditions were learned from the finite samples and a water distribution network example was simulated using this model. In addition, the BP ANN model was used to simulate the same example. Through the analysis of the result of the actual security level, the security level acquired by the LS-SVM model and BP ANN model, it may be found that the result acquired by the LS-SVM model has high accuracy, and may used in actual engineering.


2014 ◽  
Vol 14 (12) ◽  
pp. 4134-4142 ◽  
Author(s):  
Thaw Tar Thein Zan ◽  
Hock Beng Lim ◽  
Kai-Juan Wong ◽  
Andrew J. Whittle ◽  
Bu-Sung Lee

2007 ◽  
Vol 9 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Zhengfu Rao ◽  
Fernando Alvarruiz

As part of the POWADIMA research project, this paper describes the technique used to predict the consequences of different control settings on the performance of the water-distribution network, in the context of real-time, near-optimal control. Since the use of a complex hydraulic simulation model is somewhat impractical for real-time operations as a result of the computational burden it imposes, the approach adopted has been to capture its domain knowledge in a far more efficient form by means of an artificial neural network (ANN). The way this is achieved is to run the hydraulic simulation model off-line, with a large number of different combinations of initial tank-storage levels, demands, pump and valve settings, to predict future tank-storage water levels, hydrostatic pressures and flow rates at critical points throughout the network. These input/output data sets are used to train an ANN, which is then verified using testing sets. Thereafter, the ANN is employed in preference to the hydraulic simulation model within the optimization process. For experimental purposes, this technique was initially applied to a small, hypothetical water-distribution network, using EPANET as the hydraulic simulation package. The application to two real networks is described in subsequent papers of this series.


Sign in / Sign up

Export Citation Format

Share Document