scholarly journals Knowledge Graph Convolutional Networks for Recommender Systems

Author(s):  
Hongwei Wang ◽  
Miao Zhao ◽  
Xing Xie ◽  
Wenjie Li ◽  
Minyi Guo
2021 ◽  
Author(s):  
Xing Wei ◽  
Jiangjiang Liu

Knowledge Graph (KG) related recommendation method is advanced in dealing with cold start problems and sparse data. Knowledge Graph Convolutional Network (KGCN) is an end-to-end framework that has been proved to have the ability to capture latent item-entity features by mining their associated attributes on the KG. In KGCN, aggregator plays a key role for extracting information from the high-order structure. In this work, we proposed Knowledge Graph Processor (KGP) for pre-processing data and building corresponding knowledge graphs. A knowledge graph for the Yelp Open dataset was constructed with KGP. In addition, we investigated the impacts of various aggregators with three nonlinear functions on KGCN with Yelp Open dataset KG.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 232
Author(s):  
Janneth Chicaiza ◽  
Priscila Valdiviezo-Diaz

In recent years, the use of recommender systems has become popular on the web. To improve recommendation performance, usage, and scalability, the research has evolved by producing several generations of recommender systems. There is much literature about it, although most proposals focus on traditional methods’ theories and applications. Recently, knowledge graph-based recommendations have attracted attention in academia and the industry because they can alleviate information sparsity and performance problems. We found only two studies that analyze the recommendation system’s role over graphs, but they focus on specific recommendation methods. This survey attempts to cover a broader analysis from a set of selected papers. In summary, the contributions of this paper are as follows: (1) we explore traditional and more recent developments of filtering methods for a recommender system, (2) we identify and analyze proposals related to knowledge graph-based recommender systems, (3) we present the most relevant contributions using an application domain, and (4) we outline future directions of research in the domain of recommender systems. As the main survey result, we found that the use of knowledge graphs for recommendations is an efficient way to leverage and connect a user’s and an item’s knowledge, thus providing more precise results for users.


Author(s):  
Navin Tatyaba Gopal ◽  
Anish Raj Khobragade

The Knowledge graphs (KGs) catches structured data and relationships among a bunch of entities and items. Generally, constitute an attractive origin of information that can advance the recommender systems. But, present methodologies of this area depend on manual element thus don’t permit for start to end training. This article proposes, Knowledge Graph along with Label Smoothness (KG-LS) to offer better suggestions for the recommender Systems. Our methodology processes user-specific entities by prior application of a function capability that recognizes key KG-relationships for a specific user. In this manner, we change the KG in a specific-user weighted graph followed by application of a graph neural network to process customized entity embedding. To give better preliminary predisposition, label smoothness comes into picture, which places items in the KG which probably going to have identical user significant names/scores. Use of, label smoothness gives regularization above the edge weights thus; we demonstrate that it is comparable to a label propagation plan on the graph. Additionally building-up a productive usage that symbolizes solid adaptability concerning the size of knowledge graph. Experimentation on 4 datasets shows that our strategy beats best in class baselines. This process likewise accomplishes solid execution in cold start situations where user-entity communications remain meager.


2019 ◽  
Vol 37 (3) ◽  
pp. 1-26 ◽  
Author(s):  
Hongwei Wang ◽  
Fuzheng Zhang ◽  
Jialin Wang ◽  
Miao Zhao ◽  
Wenjie Li ◽  
...  

Semantic Web ◽  
2021 ◽  
pp. 1-20
Author(s):  
Pierre Monnin ◽  
Chedy Raïssi ◽  
Amedeo Napoli ◽  
Adrien Coulet

Knowledge graphs are freely aggregated, published, and edited in the Web of data, and thus may overlap. Hence, a key task resides in aligning (or matching) their content. This task encompasses the identification, within an aggregated knowledge graph, of nodes that are equivalent, more specific, or weakly related. In this article, we propose to match nodes within a knowledge graph by (i) learning node embeddings with Graph Convolutional Networks such that similar nodes have low distances in the embedding space, and (ii) clustering nodes based on their embeddings, in order to suggest alignment relations between nodes of a same cluster. We conducted experiments with this approach on the real world application of aligning knowledge in the field of pharmacogenomics, which motivated our study. We particularly investigated the interplay between domain knowledge and GCN models with the two following focuses. First, we applied inference rules associated with domain knowledge, independently or combined, before learning node embeddings, and we measured the improvements in matching results. Second, while our GCN model is agnostic to the exact alignment relations (e.g., equivalence, weak similarity), we observed that distances in the embedding space are coherent with the “strength” of these different relations (e.g., smaller distances for equivalences), letting us considering clustering and distances in the embedding space as a means to suggest alignment relations in our case study.


Sign in / Sign up

Export Citation Format

Share Document