scholarly journals Parallel edge-based sampling for static and dynamic graphs

Author(s):  
Kartik Lakhotia ◽  
Rajgopal Kannan ◽  
Aditya Gaur ◽  
Ajitesh Srivastava ◽  
Viktor Prasanna
Author(s):  
Renato N. Elias ◽  
Milton A. Gonc¸alves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperanc¸a ◽  
Marcos A. D. Martins ◽  
...  

Flows involving waves and free-surfaces occur in several problems in hydrodynamics, such as sloshing in tanks, waves breaking in ships and motions of offshore platforms. The computation of such wave problems is challenging since the water/air interface (or free-surface) commonly present merging, fragmentation and cusps, leading to the use of interface capturing Arbitrary Lagrangian-Eulerian (ALE) approaches. In such methods the interface between the two fluids is captured by the use of a marking function which is transported in a flow field. In this work we simulate these problems with a 3D incompressible SUPG/PSPG parallel edge-based finite element flow solver associated to the Volume-of-Fluid (VOF) method [1]. The hyperbolic equation for the transport of the marking function is also solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity at the interface. The performance and accuracy of the proposed solution method is tested in the simulation of progressive waves and the interaction of a fixed cylinder with a progressive wave.


Author(s):  
Renato N. Elias ◽  
Milton A. Gonc¸alves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperanc¸a ◽  
Marcos A. D. Martins ◽  
...  

Free-surface flows occur in several problems in hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore platforms, harbors and coastal areas. The computation of such highly nonlinear flows is challenging since free-surfaces commonly present merging, fragmentation and breaking parts, leading to the use of interface capturing Eulerian approaches. In such methods the surface between two fluids is captured by the use of a marking function which is transported in a flow field. In this work we discuss computational techniques for efficient implementation of 3D incompressible SUPG/PSPG finite element methods to cope with free-surface problems with the Volume-of-Fluid (VOF) method [1]. The pure advection equation for the scalar marking function was solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity of the interface. We introduce parallel edge-based data structures, a parallel dynamic deactivation algorithm to solve the marking function equation only in a small region around the interface. The implementation is targeted to distributed memory systems with cache-based processors. The performance and accuracy of the proposed solution method is tested in the simulation of the water impact on a square cylinder and in the propagation of a solitary wave.


2005 ◽  
Vol 38 (4-5) ◽  
pp. 365-381 ◽  
Author(s):  
Renato N. Elias ◽  
Marcos A. D. Martins ◽  
Alvaro L. G. A. Coutinho

Author(s):  
Renato N. Elias ◽  
Milton A. Gonc¸alves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperanc¸a ◽  
Marcos A. D. Martins ◽  
...  

Flows involving waves and free-surfaces occur in several problems in hydrodynamics, such as sloshing in tanks, waves breaking in ship and motions of offshore platforms. The computation of such wave problems is challenging since the water/air interface (or free-surface) commonly present merging, fragmentation and cusps, leading to the use of interface capturing Arbitrary Lagrangian-Eulerian (ALE) approaches. In such methods the interface between the two fluids is captured by the use of a marking function which is transported in a flow field. In this work we simulate these problems with a 3D incompressible SUPG/PSPG parallel edge-based finite element flow solver associated to the Volume-of-Fluid (VOF) method [1]. The hyperbolic equation for the transport of the marking function is also solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity at the interface. The performance and accuracy of the proposed solution method is tested in the simulation of pulse wave and the interaction of a fixed square cylinder with a progressive wave.


Author(s):  
Renato N. Elias ◽  
Milton A. Gonçalves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperança ◽  
Marcos A. D. Martins ◽  
...  

Free-surface flows occur in several problems in hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore platforms, harbors, and coastal areas. The computation of such highly nonlinear flows is challenging, since free-surfaces commonly present merging, fragmentation, and breaking parts, leading to the use of interface-capturing Eulerian approaches. In such methods the surface between two fluids is captured by the use of a marking function, which is transported in a flow field. In this work we discuss computational techniques for efficient implementation of 3D incompressible streamline-upwind/Petrov–Galerkin (SUPG)/pressure-stabilizing/Petrov–Galerkin finite element methods to cope with free-surface problems with the volume-of-fluid method (Elias, and Coutinho, 2007, “Stabilized Edge-Based Finite Element Simulation of Free-Surface Flows,” Int. J. Numer. Methods Fluids, 54, pp. 965–993). The pure advection equation for the scalar marking function was solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced, adding or removing mass proportionally to the absolute value of the normal velocity of the interface. We introduce parallel edge-based data structures, a parallel dynamic deactivation algorithm to solve the marking function equation only in a small region around the interface. The implementation is targeted to distributed memory systems with cache-based processors. The performance and accuracy of the proposed solution method is tested in the simulation of the water impact on a square cylinder and in the propagation of a solitary wave.


Author(s):  
José L. D. Alves ◽  
Carlos E. Silva ◽  
Nestor O. Guevara ◽  
Alvaro L. G. A. Coutinho ◽  
Renato N. Elias ◽  
...  

This work presents the development of EdgeCFD-ALE, a finite element system for complex fluid-structure interactions designed for offshore hydrodynamics. Sloshing of liquids in tanks, wave breaking in ships, offshore platforms motions and green water on decks are important examples of these problems. The software uses edge-based parallel stabilized finite elements for the Navier-Stokes equations and the Volume-Of-Fluid method for the free-surface, both described by an Arbitrary Lagrangian Eulerian (ALE) formulation. Turbulence in is treated by a Smagorinsky model. Mesh updating is accomplished by a parallel edge-based solution of a non-homogeneous scalar diffusion problem in each spatial coordinate. Boundary conditions involve the motion of the immersed body’s surface, i.e., the fluid-structure interface, taken as the Lagrangian portion of the domain in the overall problem. The simulation capabilities of the present software are demonstrated in the solution of two problems, the interaction of two cylinders in tandem and the free fall of a sphere.


Sign in / Sign up

Export Citation Format

Share Document