Component recognition method based on deep learning and machine vision

Author(s):  
Hao Tang ◽  
Jie Chen ◽  
Xuesong Zhen
Author(s):  
Dan Luo

Background: As known that the semi-supervised algorithm is a classical algorithm in semi-supervised learning algorithm. Methods: In the paper, it proposed improved cooperative semi-supervised learning algorithm, and the algorithm process is presented in detailed, and it is adopted to predict unlabeled electronic components image. Results: In the experiments of classification and recognition of electronic components, it show that through the method the accuracy the proposed algorithm in electron device image recognition can be significantly improved, the improved algorithm can be used in the actual recognition process . Conclusion: With the continuous development of science and technology, machine vision and deep learning will play a more important role in people's life in the future. The subject research based on the identification of the number of components is bound to develop towards the direction of high precision and multi-dimension, which will greatly improve the production efficiency of electronic components industry.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226324-226336
Author(s):  
Shuguang Ning ◽  
Yigang He ◽  
Lifen Yuan ◽  
Yuan Huang ◽  
Shudong Wang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuanyuan Xu ◽  
Genke Yang ◽  
Jiliang Luo ◽  
Jianan He

Electronic component recognition plays an important role in industrial production, electronic manufacturing, and testing. In order to address the problem of the low recognition recall and accuracy of traditional image recognition technologies (such as principal component analysis (PCA) and support vector machine (SVM)), this paper selects multiple deep learning networks for testing and optimizes the SqueezeNet network. The paper then presents an electronic component recognition algorithm based on the Faster SqueezeNet network. This structure can reduce the size of network parameters and computational complexity without deteriorating the performance of the network. The results show that the proposed algorithm performs well, where the Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC), capacitor and inductor, reach 1.0. When the FPR is less than or equal 10 − 6   level, the TPR is greater than or equal to 0.99; its reasoning time is about 2.67 ms, achieving the industrial application level in terms of time consumption and performance.


2020 ◽  
Vol 128 (4) ◽  
pp. 771-772 ◽  
Author(s):  
Ling Shao ◽  
Hubert P. H. Shum ◽  
Timothy Hospedales

Author(s):  
Ahmad Jahanbakhshi ◽  
Yousef Abbaspour-Gilandeh ◽  
Kobra Heidarbeigi ◽  
Mohammad Momeny

Sign in / Sign up

Export Citation Format

Share Document