Color Watermarking based on DCT and YCbCr Color Space for Privacy Preservation in Smart Cities

Author(s):  
Luis Rosales Roldan ◽  
Angelina Espejel Trujillo ◽  
Mariko Nakano Miyatake ◽  
Jinhui Chano
2014 ◽  
Vol 543-547 ◽  
pp. 2873-2878
Author(s):  
Hui Yong Li ◽  
Hong Xu Jiang ◽  
Ping Zhang ◽  
Han Qing Li ◽  
Qian Cao

Modern embedded portable devices usually have to deal with large amounts of video data. Due to massive floating-point multiplications, the color space conversion is inefficient on the embedded processor. Considering the characteristics of RGB to YCbCr color space conversion, this paper proposed a strategy for truncated-based LUT Multiplier (T-LUT Multiplier). On this base, an original approach converting RGB to YCbCr is presented which employs the T-LUT Multiplier and the pipeline-based adder. Experimental results demonstrate that the proposed method can obtain maximum operating frequency of 358MHz, 3.5 times faster than the direct method. Furthermore, the power consumption is less than that of the general method approximately by 15%~27%.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6131
Author(s):  
Mamun Abu-Tair ◽  
Soufiene Djahel ◽  
Philip Perry ◽  
Bryan Scotney ◽  
Unsub Zia ◽  
...  

Internet of Things (IoT) technology is increasingly pervasive in all aspects of our life and its usage is anticipated to significantly increase in future Smart Cities to support their myriad of revolutionary applications. This paper introduces a new architecture that can support several IoT-enabled smart home use cases, with a specified level of security and privacy preservation. The security threats that may target such an architecture are highlighted along with the cryptographic algorithms that can prevent them. An experimental study is performed to provide more insights about the suitability of several lightweight cryptographic algorithms for use in securing the constrained IoT devices used in the proposed architecture. The obtained results showed that many modern lightweight symmetric cryptography algorithms, as CLEFIA and TRIVIUM, are optimized for hardware implementations and can consume up to 10 times more energy than the legacy techniques when they are implemented in software. Moreover, the experiments results highlight that CLEFIA significantly outperforms TRIVIUM under all of the investigated test cases, and the latter performs 100 times worse than the legacy cryptographic algorithms tested.


2013 ◽  
Vol 393 ◽  
pp. 556-560
Author(s):  
Nurul Fatiha Johan ◽  
Yasir Mohd Mustafah ◽  
Nahrul Khair Alang Md Rashid

Skin color is proved to be very useful technique for human body parts detection. The detection of human body parts using skin color has gained so much attention by many researchers in various applications especially in person tracking, search and rescue. In this paper, we propose a method for detecting human body parts using YCbCr color spaces in color images. The image captured in RGB format will be transformed into YCbCr color space. This color model will be converted to binary image by using color thresholding which contains the candidate human body parts like face and hands. The detection algorithm uses skin color segmentation and morphological operation.


2019 ◽  
Vol 1367 ◽  
pp. 012028
Author(s):  
Bagaskara Aji Wicaksono ◽  
Ledya Novamizanti ◽  
Nur Ibrahim

2011 ◽  
Vol 121-126 ◽  
pp. 672-676 ◽  
Author(s):  
Xin Yan Cao ◽  
Hong Fei Liu

Skin color detection is a hot research of computer vision, pattern identification and human-computer interaction. Skin region is one of the most important features to detect the face and hand pictures. For detecting the skin images effectively, a skin color classification technique that employs Bayesian decision with color statistics data has been presented. In this paper, we have provided the description, comparison and evaluation results of popular methods for skin modeling and detection. A Bayesian approach to skin color classification was presented. The statistics of skin color distribution were obtained in YCbCr color space. Using the Bayes decision rule for minimum cot, the amount of false detection and false dismissal could be controlled by adjusting the threshold value. The results showed that this approach could effectively identify skin color pixels and provide good coverage of all human races, and this technique is capable of segmenting the hands and face quite effectively. The algorithm allows the flexibility of incorporating additional techniques to enhance the results.


2015 ◽  
Vol 151 ◽  
pp. 252-258 ◽  
Author(s):  
Xia Zhu ◽  
Renwen Chen ◽  
Huakang Xia ◽  
Piaoyan Zhang

Author(s):  
Chongshan Lv ◽  
◽  
Ting Zhang ◽  
Chengyuan Liu

In gesture recognition systems, segmenting gestures from complex background is the hardest and the most critical part. Gesture segmentation is the prerequisite of following image processing, and the result of segmentation has a direct influence on the result of gesture recognition. This paper proposed an algorithm of adaptive threshold gesture segmentation based on skin color. First of all, the image should be transformed from RGB color space to YCbCr color space. After eliminating luminance component Y, similarity graph of skin color will be obtained from the Gaussian model. Then Otsu adaptive threshold algorithm is used to carry out binary processing for the similarity graph of skin color. After the segmentation of skin color regions, the morphology method is used to process binary image for determining the location of hands. Experimental results show that the detailed segmentation of skin color using the dynamic-adaptive threshold can improve noise resistance and can produce better results.


Sign in / Sign up

Export Citation Format

Share Document