scholarly journals On the Price of Anarchy for flows over time

Author(s):  
José Correa ◽  
Andrés Cristi ◽  
Tim Oosterwijk
2010 ◽  
Vol 49 (1) ◽  
pp. 71-97 ◽  
Author(s):  
Ronald Koch ◽  
Martin Skutella

Author(s):  
José Correa ◽  
Andrés Cristi ◽  
Tim Oosterwijk

Dynamic network flows, or network flows over time, constitute an important model for real-world situations in which steady states are unusual, such as urban traffic and the internet. These applications immediately raise the issue of analyzing dynamic network flows from a game-theoretic perspective. In this paper, we study dynamic equilibria in the deterministic fluid queuing model in single-source, single-sink networks—arguably the most basic model for flows over time. In the last decade, we have witnessed significant developments in the theoretical understanding of the model. However, several fundamental questions remain open. One of the most prominent ones concerns the price of anarchy, measured as the worst-case ratio between the minimum time required to route a given amount of flow from the source to the sink and the time a dynamic equilibrium takes to perform the same task. Our main result states that, if we could reduce the inflow of the network in a dynamic equilibrium, then the price of anarchy is bounded by a factor, parameterized by the longest path length that converges to [Formula: see text], and this is tight. This significantly extends a result by Bhaskar et al. (SODA 2011). Furthermore, our methods allow us to determine that the price of anarchy in parallel-link and parallel-path networks is exactly 4/3. Finally, we argue that, if a certain, very natural, monotonicity conjecture holds, the price of anarchy in the general case is exactly [Formula: see text].


Author(s):  
Artur Gorokh ◽  
Siddhartha Banerjee ◽  
Krishnamurthy Iyer

Nonmonetary mechanisms for repeated allocation and decision making are gaining widespread use in many real-world settings. Our aim in this work is to study the performance and incentive properties of simple mechanisms based on artificial currencies in such settings. To this end, we make the following contributions: For a general allocation setting, we provide two black-box approaches to convert any one-shot monetary mechanism to a dynamic nonmonetary mechanism using an artificial currency that simultaneously guarantees vanishing gains from nontruthful reporting over time and vanishing losses in performance. The two mechanisms trade off between their applicability and their computational and informational requirements. Furthermore, for settings with two agents, we show that a particular artificial currency mechanism also results in a vanishing price of anarchy.


Author(s):  
Zhiqiang Feng ◽  
Paul Boyle

A significant problem facing geographical researchers who wish to compare migration and commuting flows over time is that the boundaries of the geographical areas, between which flows are recorded, often change. This chapter describes an innovative method for re-estimating the migration and commuting data collected in the 1981 and 1991 Censuses for the geographical units used in the 2001 Census. The estimated interaction data are provided as origin-destination flow matrices for wards in England and Wales and pseudo-postcode sectors in Scotland. Altogether, there were about 10,000 zones in 1981, 1991 and 2001, providing huge but sparsely populated matrices of 10,000 by 10,000 cells. Because of the changing boundaries during inter-censal periods, virtually no work has attempted to compare local level migration and commuting flows in the two decades, 1981-91 and 1991-2001. The re-estimated spatially consistent interaction flows described here allow such comparisons to be made and we use migration change in England and commuting change in Liverpool to demonstrate the value of these new data.


2013 ◽  
Vol 58 (1) ◽  
pp. 147-159 ◽  
Author(s):  
C. Maddox ◽  
J. Corcoran ◽  
Y. Liu

2014 ◽  
Vol 544 ◽  
pp. 74-83 ◽  
Author(s):  
Jan-Philipp W. Kappmeier ◽  
Jannik Matuschke ◽  
Britta Peis

Sign in / Sign up

Export Citation Format

Share Document