Stereo Visual Odometry with Stixel Map based Obstacle Detection for Autonomous Navigation

Author(s):  
Deepak Singh
Author(s):  
J. Kersten ◽  
V. Rodehorst

Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.


Author(s):  
J. Kersten ◽  
V. Rodehorst

Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.


2021 ◽  
pp. 1-18
Author(s):  
Yi Zhou ◽  
Guillermo Gallego ◽  
Shaojie Shen

Author(s):  
Sara Farboud-Sheshdeh ◽  
Timothy D. Barfoot ◽  
Raymond H. Kwong

Author(s):  
Arturo de la Escalera ◽  
Ebroul Izquierdo ◽  
David Martín ◽  
Fernando García ◽  
José María Armingol

2018 ◽  
Vol 06 (04) ◽  
pp. 267-275
Author(s):  
Ajay Shankar ◽  
Mayank Vatsa ◽  
P. B. Sujit

Development of low-cost robots with the capability to detect and avoid obstacles along their path is essential for autonomous navigation. These robots have limited computational resources and payload capacity. Further, existing direct range-finding methods have the trade-off of complexity against range. In this paper, we propose a vision-based system for obstacle detection which is lightweight and useful for low-cost robots. Currently, monocular vision approaches used in the literature suffer from various environmental constraints such as texture and color. To mitigate these limitations, a novel algorithm is proposed, termed as Pyramid Histogram of Oriented Optical Flow ([Formula: see text]-HOOF), which distinctly captures motion vectors from local image patches and provides a robust descriptor capable of discriminating obstacles from nonobstacles. A support vector machine (SVM) classifier that uses [Formula: see text]-HOOF for real-time obstacle classification is utilized. To avoid obstacles, a behavior-based collision avoidance mechanism is designed that updates the probability of encountering an obstacle while navigating. The proposed approach depends only on the relative motion of the robot with respect to its surroundings, and therefore is suitable for both indoor and outdoor applications and has been validated through simulated and hardware experiments.


Author(s):  
Chuanye Tang ◽  
Xinwen Zhao ◽  
Jianfeng Chen ◽  
Long Chen ◽  
Yazhou Zhou

Sign in / Sign up

Export Citation Format

Share Document