scholarly journals Fine-grained static detection of obfuscation transforms using ensemble-learning and semantic reasoning

Author(s):  
Ramtine Tofighi-Shirazi ◽  
Irina Măriuca Asăvoae ◽  
Philippe Elbaz-Vincent
Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


Author(s):  
Hui Yuan ◽  
Yan Huang ◽  
Dongbo Zhang ◽  
Zerui Chen ◽  
Wenlong Cheng ◽  
...  

Author(s):  
Weikuang Li ◽  
Tian Wang ◽  
Mengyi Zhang ◽  
Chuanyun Wang ◽  
Guangcun Shan ◽  
...  

2019 ◽  
Author(s):  
Ali Fadel ◽  
Ibrahim Tuffaha ◽  
Mahmoud Al-Ayyoub

2019 ◽  
Author(s):  
Ahmad Ragab ◽  
Haitham Seelawi ◽  
Mostafa Samir ◽  
Abdelrahman Mattar ◽  
Hesham Al-Bataineh ◽  
...  

Author(s):  
George Petrides ◽  
Wouter Verbeke

AbstractOver the years, a plethora of cost-sensitive methods have been proposed for learning on data when different types of misclassification errors incur different costs. Our contribution is a unifying framework that provides a comprehensive and insightful overview on cost-sensitive ensemble methods, pinpointing their differences and similarities via a fine-grained categorization. Our framework contains natural extensions and generalisations of ideas across methods, be it AdaBoost, Bagging or Random Forest, and as a result not only yields all methods known to date but also some not previously considered.


2021 ◽  
Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

Abstract In order to solve the problem of Distributed Denial of Service (DDoS) attack detection in software defined network (SDN), we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse grained initial detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Sign in / Sign up

Export Citation Format

Share Document