scholarly journals A cooperative DDoS attack detection scheme based on entropy and ensemble learning in SDN

Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

Abstract In order to solve the problem of Distributed Denial of Service (DDoS) attack detection in software defined network (SDN), we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse grained initial detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.

Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


2021 ◽  
Vol 19 (2) ◽  
pp. 1280-1303
Author(s):  
Jiushuang Wang ◽  
◽  
Ying Liu ◽  
Huifen Feng

<abstract><p>Network security has become considerably essential because of the expansion of internet of things (IoT) devices. One of the greatest hazards of today's networks is distributed denial of service (DDoS) attacks, which could destroy critical network services. Recent numerous IoT devices are unsuspectingly attacked by DDoS. To securely manage IoT equipment, researchers have introduced software-defined networks (SDN). Therefore, we propose a DDoS attack detection scheme to secure the real-time in the software-defined the internet of things (SD-IoT) environment. In this article, we utilize improved firefly algorithm to optimize the convolutional neural network (CNN), to provide detection for DDoS attacks in our proposed SD-IoT framework. Our results demonstrate that our scheme can achieve higher than 99% DDoS behavior and benign traffic detection accuracy.</p></abstract>


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Biao Han ◽  
Xiangrui Yang ◽  
Zhigang Sun ◽  
Jinfeng Huang ◽  
Jinshu Su

Distributed Denial of Service (DDoS) attacks are one of the biggest concerns for security professionals. Traditional middle-box based DDoS attack defense is lack of network-wide monitoring flexibility. With the development of software-defined networking (SDN), it becomes prevalent to exploit centralized controllers to defend against DDoS attacks. However, current solutions suffer with serious southbound communication overhead and detection delay. In this paper, we propose a cross-plane DDoS attack defense framework in SDN, called OverWatch, which exploits collaborative intelligence between data plane and control plane with high defense efficiency. Attack detection and reaction are two key procedures of the proposed framework. We develop a collaborative DDoS attack detection mechanism, which consists of a coarse-grained flow monitoring algorithm on the data plane and a fine-grained machine learning based attack classification algorithm on the control plane. We propose a novel defense strategy offloading mechanism to dynamically deploy defense applications across the controller and switches, by which rapid attack reaction and accurate botnet location can be achieved. We conduct extensive experiments on a real-world SDN network. Experimental results validate the efficiency of our proposed OverWatch framework with high detection accuracy and real-time DDoS attack reaction, as well as reduced communication overhead on SDN southbound interface.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Jieren Cheng ◽  
Chen Zhang ◽  
Xiangyan Tang ◽  
Victor S. Sheng ◽  
Zhe Dong ◽  
...  

Distributed denial of service (DDoS) attacks has caused huge economic losses to society. They have become one of the main threats to Internet security. Most of the current detection methods based on a single feature and fixed model parameters cannot effectively detect early DDoS attacks in cloud and big data environment. In this paper, an adaptive DDoS attack detection method (ADADM) based on multiple-kernel learning (MKL) is proposed. Based on the burstiness of DDoS attack flow, the distribution of addresses, and the interactivity of communication, we define five features to describe the network flow characteristic. Based on the ensemble learning framework, the weight of each dimension is adaptively adjusted by increasing the interclass mean with a gradient ascent and reducing the intraclass variance with a gradient descent, and the classifier is established to identify an early DDoS attack by training simple multiple-kernel learning (SMKL) models with two characteristics including interclass mean squared difference growth (M-SMKL) and intraclass variance descent (S-SMKL). The sliding window mechanism is used to coordinate the S-SMKL and M-SMKL to detect the early DDoS attack. The experimental results indicate that this method can detect DDoS attacks early and accurately.


2021 ◽  
Author(s):  
Merlin James Rukshan Dennis

Distributed Denial of Service (DDoS) attack is a serious threat on today’s Internet. As the traffic across the Internet increases day by day, it is a challenge to distinguish between legitimate and malicious traffic. This thesis proposes two different approaches to build an efficient DDoS attack detection system in the Software Defined Networking environment. SDN is the latest networking approach which implements centralized controller, which is programmable. The central control and the programming capability of the controller are used in this thesis to implement the detection and mitigation mechanisms. In this thesis, two designed approaches, statistical approach and machine-learning approach, are proposed for the DDoS detection. The statistical approach implements entropy computation and flow statistics analysis. It uses the mean and standard deviation of destination entropy, new flow arrival rate, packets per flow and flow duration to compute various thresholds. These thresholds are then used to distinguish normal and attack traffic. The machine learning approach uses Random Forest classifier to detect the DDoS attack. We fine-tune the Random Forest algorithm to make it more accurate in DDoS detection. In particular, we introduce the weighted voting instead of the standard majority voting to improve the accuracy. Our result shows that the proposed machine-learning approach outperforms the statistical approach. Furthermore, it also outperforms other machine-learning approach found in the literature.


Author(s):  
Konstantinos F. Xylogiannopoulos ◽  
Panagiotis Karampelas ◽  
Reda Alhajj

The proliferation of low security internet of things devices has widened the range of weapons that malevolent users can utilize in order to attack legitimate services in new ways. In the recent years, apart from very large volumetric distributed denial of service attacks, low and slow attacks initiated from intelligent bot networks have been detected to target multiple hosts in a network in a timely fashion. However, even if the attacks seem to be “innocent” at the beginning, they generate huge traffic in the network without practically been detected by the traditional DDoS attack detection methods. In this chapter, an advanced pattern detection method is presented that is able to collect and classify in real time all the incoming traffic and detect a developing slow and low DDoS attack by monitoring the traffic in all the hosts of the network. The experimental analysis on a real dataset provides useful insights about the effectiveness of the method by identifying not only the main source of attack but also secondary sources that produce low traffic, targeting though multiple hosts.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Jia ◽  
Xiaohong Huang ◽  
Rujun Liu ◽  
Yan Ma

The explosive growth of network traffic and its multitype on Internet have brought new and severe challenges to DDoS attack detection. To get the higher True Negative Rate (TNR), accuracy, and precision and to guarantee the robustness, stability, and universality of detection system, in this paper, we propose a DDoS attack detection method based on hybrid heterogeneous multiclassifier ensemble learning and design a heuristic detection algorithm based on Singular Value Decomposition (SVD) to construct our detection system. Experimental results show that our detection method is excellent in TNR, accuracy, and precision. Therefore, our algorithm has good detective performance for DDoS attack. Through the comparisons with Random Forest, k-Nearest Neighbor (k-NN), and Bagging comprising the component classifiers when the three algorithms are used alone by SVD and by un-SVD, it is shown that our model is superior to the state-of-the-art attack detection techniques in system generalization ability, detection stability, and overall detection performance.


2020 ◽  
Vol 17 (4A) ◽  
pp. 655-661
Author(s):  
Mohammad Shurman ◽  
Rami Khrais ◽  
Abdulrahman Yateem

In the recent years, Denial-of-Service (DoS) or Distributed Denial-of-Service (DDoS) attack has spread greatly and attackers make online systems unavailable to legitimate users by sending huge number of packets to the target system. In this paper, we proposed two methodologies to detect Distributed Reflection Denial of Service (DrDoS) attacks in IoT. The first methodology uses hybrid Intrusion Detection System (IDS) to detect IoT-DoS attack. The second methodology uses deep learning models, based on Long Short-Term Memory (LSTM) trained with latest dataset for such kinds of DrDoS. Our experimental results demonstrate that using the proposed methodologies can detect bad behaviour making the IoT network safe of Dos and DDoS attacks


2021 ◽  
Author(s):  
◽  
Abigail Koay

<p>High and low-intensity attacks are two common Distributed Denial of Service (DDoS) attacks that disrupt Internet users and their daily operations. Detecting these attacks is important to ensure that communication, business operations, and education facilities can run smoothly. Many DDoS attack detection systems have been proposed in the past but still lack performance, scalability, and information sharing ability to detect both high and low-intensity DDoS attacks accurately and early. To combat these issues, this thesis studies the use of Software-Defined Networking technology, entropy-based features, and machine learning classifiers to develop three useful components, namely a good system architecture, a useful set of features, and an accurate and generalised traffic classification scheme. The findings from the experimental analysis and evaluation results of the three components provide important insights for researchers to improve the overall performance, scalability, and information sharing ability for building an accurate and early DDoS attack detection system.</p>


Sign in / Sign up

Export Citation Format

Share Document