Application of data anonymization in Learning Analytics

Author(s):  
Janneth Chicaiza ◽  
Ma. Carmen Cabrera-Loayza ◽  
Rene Elizalde ◽  
Nelson Piedra
2021 ◽  
Vol 13 (20) ◽  
pp. 11524
Author(s):  
Thashmee Karunaratne

Personalized learning is one of the main focuses in 21st-century education, and Learning Analytics (LA) has been recognized as a supportive tool for enhancing personalization. Meanwhile, the General Data Protection Regulations (GDPR), which concern the protection of personal data, came into effect in 2018. However, contemporary research lacks the essential knowledge of how and in which ways the presence of GDPR influence LA research and practices. Hence, this study intends to examine the requirements for sustaining LA under the light of GDPR. According to the study outcomes, the legal obligations for LA could be simplified to data anonymization with consequences of limitations to personalized interventions, one of the powers of LA. Explicit consent from the data subjects (students) prior to any data processing is mandatory under GDPR. The consent agreements must include the purpose, types of data, and how, when and where the data is processed. Moreover, transparency of the complete process of storing, retrieving, and analysing data as well as how the results are used should be explicitly documented in LA applications. The need for academic institutions to have specific regulations for supporting LA is emphasized. Regulations for sharing data with third parties is left as a further extension of this study.


2012 ◽  
Vol 16 (3) ◽  
Author(s):  
Laurie P Dringus

This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through the lens of questioning the current status of applying learning analytics to online courses. The goal of the discussion is twofold: (1) to inform online learning practitioners (e.g., instructors and administrators) of the potential of learning analytics in online courses and (2) to broaden discussion in the research community about the advancement of learning analytics in online learning. In recognizing the full potential of formalizing big data in online coures, the community must address this issue also in the context of the potentially "harmful" application of learning analytics.


Author(s):  
Shalin Eliabeth S. ◽  
Sarju S.

Big data privacy preservation is one of the most disturbed issues in current industry. Sometimes the data privacy problems never identified when input data is published on cloud environment. Data privacy preservation in hadoop deals in hiding and publishing input dataset to the distributed environment. In this paper investigate the problem of big data anonymization for privacy preservation from the perspectives of scalability and time factor etc. At present, many cloud applications with big data anonymization faces the same kind of problems. For recovering this kind of problems, here introduced a data anonymization algorithm called Two Phase Top-Down Specialization (TPTDS) algorithm that is implemented in hadoop. For the data anonymization-45,222 records of adults information with 15 attribute values was taken as the input big data. With the help of multidimensional anonymization in map reduce framework, here implemented proposed Two-Phase Top-Down Specialization anonymization algorithm in hadoop and it will increases the efficiency on the big data processing system. By conducting experiment in both one dimensional and multidimensional map reduce framework with Two Phase Top-Down Specialization algorithm on hadoop, the better result shown in multidimensional anonymization on input adult dataset. Data sets is generalized in a top-down manner and the better result was shown in multidimensional map reduce framework by the better IGPL values generated by the algorithm. The anonymization was performed with specialization operation on taxonomy tree. The experiment shows that the solutions improves the IGPL values, anonymity parameter and decreases the execution time of big data privacy preservation by compared to the existing algorithm. This experimental result will leads to great application to the distributed environment.


Sign in / Sign up

Export Citation Format

Share Document