Molecular Similarity Searching Based on Deep Belief Networks with Different Molecular Descriptors

Author(s):  
Maged Nasser ◽  
Naomie Salim ◽  
Hentabli Hamza
Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 128
Author(s):  
Maged Nasser ◽  
Naomie Salim ◽  
Hentabli Hamza ◽  
Faisal Saeed ◽  
Idris Rabiu

Virtual screening (VS) is a computational practice applied in drug discovery research. VS is popularly applied in a computer-based search for new lead molecules based on molecular similarity searching. In chemical databases similarity searching is used to identify molecules that have similarities to a user-defined reference structure and is evaluated by quantitative measures of intermolecular structural similarity. Among existing approaches, 2D fingerprints are widely used. The similarity of a reference structure and a database structure is measured by the computation of association coefficients. In most classical similarity approaches, it is assumed that the molecular features in both biological and non-biologically-related activity carry the same weight. However, based on the chemical structure, it has been found that some distinguishable features are more important than others. Hence, this difference should be taken consideration by placing more weight on each important fragment. The main aim of this research is to enhance the performance of similarity searching by using multiple descriptors. In this paper, a deep learning method known as deep belief networks (DBN) has been used to reweight the molecule features. Several descriptors have been used for the MDL Drug Data Report (MDDR) dataset each of which represents different important features. The proposed method has been implemented with each descriptor individually to select the important features based on a new weight, with a lower error rate, and merging together all new features from all descriptors to produce a new descriptor for similarity searching. Based on the extensive experiments conducted, the results show that the proposed method outperformed several existing benchmark similarity methods, including Bayesian inference networks (BIN), the Tanimoto similarity method (TAN), adapted similarity measure of text processing (ASMTP) and the quantum-based similarity method (SQB). The results of this proposed multi-descriptor-based on Stack of deep belief networks method (SDBN) demonstrated a higher accuracy compared to existing methods on structurally heterogeneous datasets.


Author(s):  
Maged Nasser ◽  
Naomie Salim ◽  
Hentabli Hamza ◽  
Faisal Saeed ◽  
Idris Rabiu

Virtual screening (VS) is defined as the use of a compilation of computational procedures to grade, score and/or sort several chemical formations. The purpose of VS is to identify the molecules holding the greatest prior probabilities of activity. Many of the conventional similarity methods assume that molecular features that do not relate to the biological activity carry the same weight as the important ones. For this reason, the researchers on this paper investigated that some features are being more important than others through the chemist structure diagrams and the weight for each fragment should be taken into consideration by giving more weight to those fragments that are more important. In this paper, a deep learning method specifically known as Deep Belief Networks (DBN) has been used to reweight the molecule features and based on this new weigh, the reconstruction feature error has been calculated for all the features. Based on the reconstruction feature error values, Principal Component Analysis (PCA) has been used for the dimension’s reduction and only few hundreds of features have been selected based on the less error rate. The main aim of this research is to show an improvement of the similarity searching performance based on the selected features those have less error rate. The results derived through the DBN were compared with those derived through other similarity methods, such as the Tanimoto coefficient and the quantum-based methods. This comparison revealed the performance of the DBN with the structurally heterogeneous data sets (DS1 and DS3) to be superior to the performances of all the other techniques.


Author(s):  
Vidhusha Srinivasan ◽  
N. Udayakumar ◽  
Kavitha Anandan

Background: The spectrum of autism encompasses High Functioning Autism (HFA) and Low Functioning Autism (LFA). Brain mapping studies have revealed that autism individuals have overlaps in brain behavioural characteristics. Generally, high functioning individuals are known to exhibit higher intelligence and better language processing abilities. However, specific mechanisms associated with their functional capabilities are still under research. Objective: This work addresses the overlapping phenomenon present in autism spectrum through functional connectivity patterns along with brain connectivity parameters and distinguishes the classes using deep belief networks. Methods: The task-based functional Magnetic Resonance Images (fMRI) of both high and low functioning autistic groups were acquired from ABIDE database, for 58 low functioning against 43 high functioning individuals while they were involved in a defined language processing task. The language processing regions of the brain, along with Default Mode Network (DMN) have been considered for the analysis. The functional connectivity maps have been plotted through graph theory procedures. Brain connectivity parameters such as Granger Causality (GC) and Phase Slope Index (PSI) have been calculated for the individual groups. These parameters have been fed to Deep Belief Networks (DBN) to classify the subjects under consideration as either LFA or HFA. Results: Results showed increased functional connectivity in high functioning subjects. It was found that the additional interaction of the Primary Auditory Cortex lying in the temporal lobe, with other regions of interest complimented their enhanced connectivity. Results were validated using DBN measuring the classification accuracy of 85.85% for high functioning and 81.71% for the low functioning group. Conclusion: Since it is known that autism involves enhanced, but imbalanced components of intelligence, the reason behind the supremacy of high functioning group in language processing and region responsible for enhanced connectivity has been recognized. Therefore, this work that suggests the effect of Primary Auditory Cortex in characterizing the dominance of language processing in high functioning young adults seems to be highly significant in discriminating different groups in autism spectrum.


2017 ◽  
Vol 16 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Tianming Zhan ◽  
Yi Chen ◽  
Xunning Hong ◽  
Zhenyu Lu ◽  
Yunjie Chen

2016 ◽  
Vol 8 (3/4) ◽  
pp. 237 ◽  
Author(s):  
Mohamed Benouis ◽  
Mohamed Senouci ◽  
Redouane Tlemsani ◽  
Lotfi Mostefai

Sign in / Sign up

Export Citation Format

Share Document