Path planning of mobile robots based on an improved A*algorithm

Author(s):  
Bochen Li ◽  
Chaoyi Dong ◽  
Qiming Chen ◽  
Yingze Mu ◽  
Zhiqiang Fan ◽  
...  
2015 ◽  
Author(s):  
Juan D. Contreras ◽  
Fernando Martínez S. ◽  
Fredy H. Martínez S.

Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 99 ◽  
Author(s):  
Haiyan Wang ◽  
Zhiyu Zhou

Path planning, as the core of navigation control for mobile robots, has become the focus of research in the field of mobile robots. Various path planning algorithms have been recently proposed. In this paper, in view of the advantages and disadvantages of different path planning algorithms, a heuristic elastic particle swarm algorithm is proposed. Using the path planned by the A* algorithm in a large-scale grid for global guidance, the elastic particle swarm optimization algorithm uses a shrinking operation to determine the globally optimal path formed by locally optimal nodes so that the particles can converge to it rapidly. Furthermore, in the iterative process, the diversity of the particles is ensured by a rebound operation. Computer simulation and real experimental results show that the proposed algorithm not only overcomes the shortcomings of the A* algorithm, which cannot yield the shortest path, but also avoids the problem of failure to converge to the globally optimal path, owing to a lack of heuristic information. Additionally, the proposed algorithm maintains the simplicity and high efficiency of both the algorithms.


Author(s):  
Bijun Tang ◽  
◽  
Kaoru Hirota ◽  
Xiangdong Wu ◽  
Yaping Dai ◽  
...  

Hybrid A* algorithm has been widely used in mobile robots to obtain paths that are collision-free and drivable. However, the outputs of hybrid A* algorithm always contain unnecessary steering actions and are close to the obstacles. In this paper, the artificial potential field (APF) concept is applied to optimize the paths generated by the hybrid A* algorithm. The generated path not only satisfies the non-holonomic constraints of the vehicle, but also is smooth and keeps a comfortable distance to the obstacle at the same time. Through the robot operating system (ROS) platform, the path planning experiments are carried out based on the hybrid A* algorithm and the improved hybrid A* algorithm, respectively. In the experiments, the results show that the improved hybrid A* algorithm greatly reduces the number of steering actions and the maximum curvature of the paths in many different common scenarios. The paths generated by the improved algorithm nearly do not have unnecessary steering or sharp turning before the obstacles, which are safer and smoother than the paths generated by the hybrid A* algorithm for the autonomous ground vehicle.


2013 ◽  
Vol 470 ◽  
pp. 621-624 ◽  
Author(s):  
Xiao Dong Tan ◽  
Xu Wang ◽  
Pi Wei Song

The environment of automated warehouse is complex. Path collision exists conflict between intelligent robot with unknown obstacles and intelligent mobile-robot, increasing the difficulty in multiple mobile robots path planning.To solve the problem, firstly working environmental model is established with traffic rules method and the grid method. Then the whole system adopts the idea of hierarchical cooperation for dynamic local and global path planning.By simulation this method is suitable for dynamic environment with known and unknown obstacles and effectively solve the problem of path planning for multiple mobile robots in automated warehouse.


2017 ◽  
Vol 132 (3) ◽  
pp. 685-688 ◽  
Author(s):  
Z. Batik Garip ◽  
D. Karayel ◽  
S.S. Ozkan ◽  
G. Atali

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19632-19638
Author(s):  
Lisang Liu ◽  
Jinxin Yao ◽  
Dongwei He ◽  
Jian Chen ◽  
Jing Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document