scholarly journals Fast Matching Pursuit with Multi-Gabor Dictionaries

2021 ◽  
Vol 47 (3) ◽  
pp. 1-20
Author(s):  
Zdeněk Průůa ◽  
Nicki Holighaus ◽  
Peter Balazs

Finding the best K -sparse approximation of a signal in a redundant dictionary is an NP-hard problem. Suboptimal greedy matching pursuit algorithms are generally used for this task. In this work, we present an acceleration technique and an implementation of the matching pursuit algorithm acting on a multi-Gabor dictionary, i.e., a concatenation of several Gabor-type time-frequency dictionaries, each of which consists of translations and modulations of a possibly different window and time and frequency shift parameters. The technique is based on pre-computing and thresholding inner products between atoms and on updating the residual directly in the coefficient domain, i.e., without the round-trip to the signal domain. Since the proposed acceleration technique involves an approximate update step, we provide theoretical and experimental results illustrating the convergence of the resulting algorithm. The implementation is written in C (compatible with C99 and C++11), and we also provide Matlab and GNU Octave interfaces. For some settings, the implementation is up to 70 times faster than the standard Matching Pursuit Toolkit.

Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. V13-V20 ◽  
Author(s):  
Yanghua Wang

A seismic trace may be decomposed into a series of wavelets that match their time-frequency signature by using a matching pursuit algorithm, an iterative procedure of wavelet selection among a large and redundant dictionary. For reflection seismic signals, the Morlet wavelet may be employed, because it can represent quantitatively the energy attenuation and velocity dispersion of acoustic waves propagating through porous media. The efficiency of an adaptive wavelet selection is improved by making first a preliminary estimate and then a localized refining search, whereas complex-trace attributes and derived analytical expressions are also used in various stages. For a constituent wavelet, the scale is an important adaptive parameter that controls the width of wavelet in time and the bandwidth of the frequency spectrum. After matching pursuit decomposition, deleting wavelets with either very small or very large scale values can suppress spikes and sinusoid functions effectively from the time-frequency spectrum. This time-frequency spectrum may be used in turn for lithological analysis—for instance, detection of a gas reservoir. Investigation shows that the low-frequency shadow associated with a carbonate gas reservoir still exists, even high-frequency amplitudes are compensated by inverse-[Formula: see text] filtering.


Author(s):  
Robert Beinert ◽  
Peter Jung ◽  
Gabriele Steidl ◽  
Tom Szollmann

AbstractIn this work we consider the problem of identification and reconstruction of doubly-dispersive channel operators which are given by finite linear combinations of time-frequency shifts. Such operators arise as time-varying linear systems for example in radar and wireless communications. In particular, for information transmission in highly non-stationary environments the channel needs to be estimated quickly with identification signals of short duration and for vehicular application simultaneous high-resolution radar is desired as well. We consider the time-continuous setting and prove an exact resampling reformulation of the involved channel operator when applied to a trigonometric polynomial as identifier in terms of sparse linear combinations of real-valued atoms. Motivated by recent works of Heckel et al. we present an exact approach for off-the-grid super-resolution which allows to perform the identification with realizable signals having compact support. Then we show how an alternating descent conditional gradient algorithm can be adapted to solve the reformulated problem. Numerical examples demonstrate the performance of this algorithm, in particular in comparison with a simple adaptive grid refinement strategy and an orthogonal matching pursuit algorithm.


Author(s):  
I.V. Chicherin ◽  
B.A. Fedosenkov ◽  
D.M. Dubinkin

In order to obtain information about the generated current trajectories (CT) of unmanned mining dump trucks, in the software and hardware complexes of the computer-aided dispatching system (in the external control subsystem and the autonomous control subsystem) installed on-board of an (AHP), one-dimensional (scalar) continuous signals (hereinafter converted into discrete digital ones) with a time-dependent instantaneous frequency, the so-called chirp signals, are put in accordance with the current trajectories of the AHP. This approach makes it possible to continuously monitor and manage the dynamics of current AHP trajectories with a high degree of efficiency. Note that for the purpose of information-rich and semantically transparent representation of information about the current state of the AHP CT, the chirp signals of the CT are converted into multidimensional Cohen’s class time-frequency wavelet distributions. The Wigner-Ville distribution (hereinafter referred to as the Wigner distribution) is selected as a working tool for performing computational procedures in the hardware / software module. This distribution is based on the Gabor basis wavelet functions and the wavelet matching pursuit algorithm. The choice of Gabor wavelets as the main ones is explained by their sinusoidal-like shape, since they are sinusoidal signals modulated by the Gauss window. On the other hand, the analyzed 1D-signals indicating the current position of the AHP on the route are also sinusoidal-like. This makes it possible to approximate current signals with high accuracy based on their comparison with the wavelet functions selected from the redundant wavelet dictionary. This approximation is adaptive, since it is performed on separate local fragments of the signal analyzed depending on approximating wavelets. This is the essence of the wavelet matching pursuit algorithm. The resulting wavelet series is then transformed into the Wigner time-frequency distribution, which is used to form a corresponding CT. As an example, reconstructions of time-frequency distributions (TFD) are given, corresponding to the deviation of a certain CT to the left (the trajectory signal decreases exponentially) and to the right (the CT-signal increases) from the nominal axial trajectory (NAT). The calculated scalar signal and its TFD for the AHP CT deviating to the left from NAT are also presented. In addition, on the basis of theoretical explanations the calculated linear-increasing TFD is demonstrated, corresponding to the CT-deviation to the right from NAT, and the time invariant stationary TFD characterizing the movement of AHP along the NAT line. In conclusion, based on the results obtained, it is concluded that the most appropriate ways to monitor the current trajectories of AHP movement and procedures for processing the corresponding signals are the operations implemented in computer-aided subsystems of external and autonomous control and based on such concepts as the Cohen’s class wavelet distributions, Gabor redundant dictionary of wavelet functions, the wavelet matching pursuit algorithm, and the representation of technological chirp-signals, as well as frequency-stationary signals about the current AHP trajectories represented in the wavelet medium. In this connection, the authors concluded that the procedures realizing the current monitoring of AHP movement on open pit mine routes and implementing the process of analyzing a relevant dynamic change in current trajectories, described in the article and embedded in software and hardware autonomous and external control subsystems of “Smart quarry” are adequate for performing required functions. The introduction of the principles of computer-aided controlling the unmanned mining vehicles allows you to optimize labor costs for the operation of mining equipment, reduce the cost of current work, and attract highly qualified specialists for the development and operation of innovative transport equipment.


2020 ◽  
Vol 12 (4) ◽  
pp. 600-608
Author(s):  
Svetlana KOSTYUK ◽  
◽  
Ivan CHICHERIN ◽  
Boris FEDOSENKOV ◽  
Dmitry DUBINKIN ◽  
...  

Purpose of work. The article presents the results of theoretical research and developments obtained at the Kuzbass state technical university on the implementation of current monitoring and bringing about signal processing procedures for the dynamic state of autonomous heavy platforms (AHP) on open pit mine routes. In order to obtain information about the generated current trajectories (CT) of unmanned mining dump trucks, in the software and hardware complexes of the computer-aided dispatching system (in the external control subsystem – ECSS and the autonomous control subsystem – ACSS) installed on-board of an AHP, one-dimensional (scalar) continuous signals (hereinafter converted into discrete digital ones) with a time-dependent instantaneous frequency, the so-called chirp signals, are put in accordance with the current trajectories of the AHP. Research methods. This approach makes it possible to continuously monitor and manage the dynamics of current ATP trajectories with a high degree of efficiency. Note that for the purpose of information-rich and semantically transparent representation of information about the current state of the AHP CT, the chirp signals of the CT are converted into multidimensional Cohen’s class time-frequency wavelet distributions. The Wigner-Ville distribution (hereinafter referred to as the Wigner distribution) is selected as a working tool for performing computational procedures in the hardware / software module. This distribution is based on the Gabor basis wavelet functions and the wavelet matching pursuit algorithm. The choice of Gabor wavelets as the main ones is explained by their sinusoidal-like shape, since they are sinusoidal signals modulated by the Gauss window. On the other hand, the analyzed 1D-signals indicating the current position of the AHP on the route are also sinusoidal-like. This makes it possible to approximate current signals with high accuracy based on their comparison with the wavelet functions selected from the redundant wavelet dictionary. This approximation is adaptive, since it is performed on separate local fragments of the signal analyzed depending on approximating wavelets. This is the essence of the wavelet matching pursuit algorithm. The resulting wavelet series is then transformed into the Wigner time-frequency distribution, which is used to form a corresponding CT. Research results. As an example, reconstructions of time-frequency distributions (TFD) are given, corresponding to the deviation of a certain CT to the left (the trajectory signal decreases exponentially) and to the right (the CT-signal increases) from the nominal axial trajectory (NAT). The calculated scalar signal and its TFD for the AHP CT deviating to the left from NAT are also presented. In addition, on the basis of theoretical explanations the calculated linear-increasing TFD is demonstrated, corresponding to the CT-deviation to the right from NAT, and the time invariant stationary TFD characterizing the movement of AHP along the NAT line. Сonclusion. Based on the results obtained, it is concluded that the most appropriate ways to monitor the current trajectories of AHP movement and procedures for processing the corresponding signals are the operations implemented in computer-aided subsystems of external and autonomous control and based on such concepts as the Cohen’s class wavelet distributions, Gabor redundant dictionary of wavelet functions, the wavelet matching pursuit algorithm, and the representation of technological chirp-signals, as well as frequency-stationary signals about the current AHP trajectories represented in the wavelet medium. In this connection, the authors concluded that the procedures realizing the current monitoring of AHP movement on open pit mine routes and implementing the process of analyzing a relevant dynamic change in current trajectories, described in the article and embedded in software and hardware autonomous and external control subsystems of "Smart opencast mine” are adequate for performing required functions. The introduction of the principles of computer-aided controlling the unmanned mining vehicles allows you to optimize labor costs for the operation of mining equipment, reduce the cost of current work, and attract highly qualified specialists for the development and operation of innovative transport equipment. The implementation of such prospects in mountainous regions (of a country) makes it possible to diversify the range of labor resources and, in general, contribute to the sustainable social and economic development of mountain territories.


Sign in / Sign up

Export Citation Format

Share Document