chirp signals
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 52)

H-INDEX

21
(FIVE YEARS 2)

Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Md. Noor-A-Rahim ◽  
M. Omar Khyam ◽  
Apel Mahmud ◽  
Xinde Li ◽  
Dirk Pesch ◽  
...  

Long-range (LoRa) communication has attracted much attention recently due to its utility for many Internet of Things applications. However, one of the key problems of LoRa technology is that it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT)-based demodulation scheme is devised to detect modulated symbols. To further improve the demodulation performance, a hybrid demodulation scheme, comprised of FFT- and correlation-based demodulation, is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at a bit error rate of 10−4.


Author(s):  
I.V. Chicherin ◽  
B.A. Fedosenkov ◽  
D.M. Dubinkin

In order to obtain information about the generated current trajectories (CT) of unmanned mining dump trucks, in the software and hardware complexes of the computer-aided dispatching system (in the external control subsystem and the autonomous control subsystem) installed on-board of an (AHP), one-dimensional (scalar) continuous signals (hereinafter converted into discrete digital ones) with a time-dependent instantaneous frequency, the so-called chirp signals, are put in accordance with the current trajectories of the AHP. This approach makes it possible to continuously monitor and manage the dynamics of current AHP trajectories with a high degree of efficiency. Note that for the purpose of information-rich and semantically transparent representation of information about the current state of the AHP CT, the chirp signals of the CT are converted into multidimensional Cohen’s class time-frequency wavelet distributions. The Wigner-Ville distribution (hereinafter referred to as the Wigner distribution) is selected as a working tool for performing computational procedures in the hardware / software module. This distribution is based on the Gabor basis wavelet functions and the wavelet matching pursuit algorithm. The choice of Gabor wavelets as the main ones is explained by their sinusoidal-like shape, since they are sinusoidal signals modulated by the Gauss window. On the other hand, the analyzed 1D-signals indicating the current position of the AHP on the route are also sinusoidal-like. This makes it possible to approximate current signals with high accuracy based on their comparison with the wavelet functions selected from the redundant wavelet dictionary. This approximation is adaptive, since it is performed on separate local fragments of the signal analyzed depending on approximating wavelets. This is the essence of the wavelet matching pursuit algorithm. The resulting wavelet series is then transformed into the Wigner time-frequency distribution, which is used to form a corresponding CT. As an example, reconstructions of time-frequency distributions (TFD) are given, corresponding to the deviation of a certain CT to the left (the trajectory signal decreases exponentially) and to the right (the CT-signal increases) from the nominal axial trajectory (NAT). The calculated scalar signal and its TFD for the AHP CT deviating to the left from NAT are also presented. In addition, on the basis of theoretical explanations the calculated linear-increasing TFD is demonstrated, corresponding to the CT-deviation to the right from NAT, and the time invariant stationary TFD characterizing the movement of AHP along the NAT line. In conclusion, based on the results obtained, it is concluded that the most appropriate ways to monitor the current trajectories of AHP movement and procedures for processing the corresponding signals are the operations implemented in computer-aided subsystems of external and autonomous control and based on such concepts as the Cohen’s class wavelet distributions, Gabor redundant dictionary of wavelet functions, the wavelet matching pursuit algorithm, and the representation of technological chirp-signals, as well as frequency-stationary signals about the current AHP trajectories represented in the wavelet medium. In this connection, the authors concluded that the procedures realizing the current monitoring of AHP movement on open pit mine routes and implementing the process of analyzing a relevant dynamic change in current trajectories, described in the article and embedded in software and hardware autonomous and external control subsystems of “Smart quarry” are adequate for performing required functions. The introduction of the principles of computer-aided controlling the unmanned mining vehicles allows you to optimize labor costs for the operation of mining equipment, reduce the cost of current work, and attract highly qualified specialists for the development and operation of innovative transport equipment.


2021 ◽  
Author(s):  
Shuang Wei ◽  
Rui Liu ◽  
Peng Xu ◽  
Yanhua Long ◽  
Chunxia Yang ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
V.I. Kaevitser ◽  
◽  
A.P. Krivtsov ◽  
I.V. Smolyaninov ◽  
A.V. Elbakidze ◽  
...  

At the Kotelnikov Institute of Radio Engineering and Electronics of RAS an experimental prototype of a parametric echo sounder-profiler with linear frequency modulation (LFM) of the sounding signal has been developed, manufactured and tested. Two chirp signals are emitted at frequencies of 144 kHz and 148 kHz. The difference reception frequencies have a frequency range of 1 kHz to 8 kHz. A wide band of differential frequencies is achieved by emitting two chirp signals. Laboratory and marine tests of the experimental model of the echo sounder-profiler have been carried out.


Author(s):  
Ivan Vladimirovich Chicherin ◽  
Boris Andreevich Fedosenkov

The article defines the object of control in the form of signals of current trajectories (CT), along which unmanned vehicles (UMV) move. It describes the subject field of research – the principle and technology of forming the signals generated by the computer-aided system for modal controlling the UMVs during their movement along quarry routes. In order to develop procedures for identifying an upcoming trajectory of the UMV when bypassing some static or dynamic obsta-cles, conditions are included in the software and hardware complex for the formation of the UMV corresponding trajectory direction based on assigned sinusoidal-like frequency-time-dependent functions (chirp signals) responsible for redirecting the UMV along a particular trajectory. The cor-responding chirp signals for the left and right deviation trajectories of the UMV are fixed. The no-tion of sporadic disturbances and force-modal transient processes (TP) is introduced. There has been also reviewed a new description of TP, whose signal contains the variable frequency changing by a certain law depending on the direction and nature of a CT deviation and the environment of UMV. The essence and reasons for the effects of structural and parametric nonstationarity of the control object (CO) are explained. Analytical and graphical interpretations of the emerging non-stationarity caused by the introduction of additional stationary and dynamic-type poles into the CO are presented. It is noted that the stationary poles characterize the inertia of the aperiodic components of the trajectory chirp signals, and the dynamic ones determine the permanently varied frequency of transients (their chirp form). The properties of both sporadic and forced-modal TPs’ poles localized on the complex plane are characterized. Calibration characteristics are determined that establish a relationship between the instantaneous frequency of TP and the metric deviation of UMV CT relative to the nominal axial trajectory. The difference between the procedures of localization and re-localization of poles for modal upward and downward reverse TP, on which the efficiency and safety of UMV moving along the quarry routes, depends, is functionally identified and considered. All the procedures mentioned above make it possible to monitor online and control effectively the dynamics of operative and safe UMV trajectory moving along technological quarry routes in open pit mining


2021 ◽  
Author(s):  
Md. Noor-A-Rahim ◽  
Mohammad Omar Khyam ◽  
Apel Mahmud ◽  
Xinde Li ◽  
Dirk Pesch ◽  
...  

Long-range (LoRa) communication has attracted much attention recently due to its application for many Internet of Things applications. However, one of the key problems of the LoRa technology is it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT) based demodulation scheme is devised to detect modulated symbols. To further improve demodulation performance, a hybrid demodulation scheme, comprised of FFT and correlation-based demodulation is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at bit error rate of 10^-4.


2021 ◽  
Author(s):  
Md. Noor-A-Rahim ◽  
Mohammad Omar Khyam ◽  
Apel Mahmud ◽  
Xinde Li ◽  
Dirk Pesch ◽  
...  

Long-range (LoRa) communication has attracted much attention recently due to its application for many Internet of Things applications. However, one of the key problems of the LoRa technology is it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT) based demodulation scheme is devised to detect modulated symbols. To further improve demodulation performance, a hybrid demodulation scheme, comprised of FFT and correlation-based demodulation is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at bit error rate of 10^-4.


Sign in / Sign up

Export Citation Format

Share Document