scholarly journals Vectorization for Fast, Analytic, and Differentiable Visibility

2021 ◽  
Vol 40 (3) ◽  
pp. 1-21
Author(s):  
Yang Zhou ◽  
Lifan Wu ◽  
Ravi Ramamoorthi ◽  
Ling-Qi Yan

In Computer Graphics, the two main approaches to rendering and visibility involve ray tracing and rasterization. However, a limitation of both approaches is that they essentially use point sampling. This is the source of noise and aliasing, and also leads to significant difficulties for differentiable rendering. In this work, we present a new rendering method, which we call vectorization, that computes 2D point-to-region integrals analytically, thus eliminating point sampling in the 2D integration domain such as for pixel footprints and area lights. Our vectorization revisits the concept of beam tracing, and handles the hidden surface removal problem robustly and accurately. That is, for each intersecting triangle inserted into the viewport of a beam in an arbitrary order, we are able to maintain all the visible regions formed by intersections and occlusions, thanks to our Visibility Bounding Volume Hierarchy structure. As a result, our vectorization produces perfectly anti-aliased visibility, accurate and analytic shading and shadows, and most important, fast and noise-free gradients with Automatic Differentiation or Finite Differences that directly enables differentiable rendering without any changes to our rendering pipeline. Our results are inherently high-quality and noise-free, and our gradients are one to two orders of magnitude faster than those computed with existing differentiable rendering methods.

2021 ◽  
Vol 40 (2) ◽  
pp. 683-712
Author(s):  
Daniel Meister ◽  
Shinji Ogaki ◽  
Carsten Benthin ◽  
Michael J. Doyle ◽  
Michael Guthe ◽  
...  

Author(s):  
Daqi Lin ◽  
Elena Vasiou ◽  
Cem Yuksel ◽  
Daniel Kopta ◽  
Erik Brunvand

Bounding volume hierarchies (BVH) are the most widely used acceleration structures for ray tracing due to their high construction and traversal performance. However, the bounding planes shared between parent and children bounding boxes is an inherent storage redundancy that limits further improvement in performance due to the memory cost of reading these redundant planes. Dual-split trees can create identical space partitioning as BVHs, but in a compact form using less memory by eliminating the redundancies of the BVH structure representation. This reduction in memory storage and data movement translates to faster ray traversal and better energy efficiency. Yet, the performance benefits of dual-split trees are undermined by the processing required to extract the necessary information from their compact representation. This involves bit manipulations and branching instructions which are inefficient in software. We introduce hardware acceleration for dual-split trees and show that the performance advantages over BVHs are emphasized in a hardware ray tracing context that can take advantage of such acceleration. We provide details on how the operations needed for decoding dual-split tree nodes can be implemented in hardware and present experiments in a number of scenes with different sizes using path tracing. In our experiments, we have observed up to 31% reduction in render time and 38% energy saving using dual-split trees as compared to binary BVHs representing identical space partitioning.


2010 ◽  
Vol 6 (7) ◽  
pp. 1971-1980 ◽  
Author(s):  
Ulf Ekström ◽  
Lucas Visscher ◽  
Radovan Bast ◽  
Andreas J. Thorvaldsen ◽  
Kenneth Ruud

2012 ◽  
Vol 542-543 ◽  
pp. 1434-1437
Author(s):  
Xiao Ping Xiao ◽  
Zi Sheng Li ◽  
Wei Gong

Aiming at the problem that rendering 3D Julia sets on CPU is slowly, a method of rendering 3D Julia sets on GPU is presented in this paper. After introducing the advantages of GPU and the operations of quaternion, the generating process of 3D Julia sets is discussed in detail. Ray tracing volume rendering algorithm is applied to obtain high quality 3D Julia sets, and escaping time algorithm is used to generate the discreet data of Julia sets, of which normal is estimated according to the original of ray and accelerated by using unbounding sphere algorithm, and the graphics examples are given to illustrate this algorithm. Finally, the factors of affecting rendering speed and refined effect are summarized. The results show that the speed of 3D Julia sets rendering on GPU is much faster than CPU, and the interactivity of rendering process is also enhanced.


2016 ◽  
Vol 27 (3-4) ◽  
pp. 358-368 ◽  
Author(s):  
Ulises Olivares ◽  
Héctor G. Rodríguez ◽  
Arturo García ◽  
Félix F. Ramos

Sign in / Sign up

Export Citation Format

Share Document