Automatic Pavement Crack Detection Based on Hierarchical Feature Augmentation

2021 ◽  
Author(s):  
Wenke Cheng ◽  
Yinghua Zhou
2020 ◽  
Vol 13 (6) ◽  
pp. 1-9
Author(s):  
CHEN Xiao-Dong ◽  
◽  
AI Da-Hang ◽  
ZHANG Jia-Chen ◽  
CAI Huai-Yu ◽  
...  

2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Hongwei Lei ◽  
Jianlian Cheng ◽  
Qi Xu

This article introduces the application of image recognition technology in cement pavement crack detection and put forward to method for determining threshold about grayscale stretching. the algorithm is designed about binarization which has a self-adaptive characteristic. After the image is preprocessed, we apply 2D Wavelet and Laplace operator to process the image. According to the characteristic of pixel of gray image, an algorithm designed on binarization for Binary image. The feasibility of this method can be verified the image processed by comparing with the results of three algorithms: Otsu method, iteration method and fixed threshold method.


2020 ◽  
Vol 57 (14) ◽  
pp. 141031
Author(s):  
李刚 Li Gang ◽  
刘强伟 Liu Qiangwei ◽  
万健 Wan Jian ◽  
马彪 Ma Biao ◽  
李莹 Li Ying

2020 ◽  
Vol 35 (11) ◽  
pp. 1291-1305
Author(s):  
Jingwei Liu ◽  
Xu Yang ◽  
Stephen Lau ◽  
Xin Wang ◽  
Sang Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document