RCS Reduction of Wideband Antenna Array Based on Artificial Magnetic Conductor

2021 ◽  
Author(s):  
Chenkefan Gao ◽  
Zhipeng Zhou ◽  
Xiaoqiu Li ◽  
Qiang Gao
Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Khader Zelani Shaik ◽  
Siddaiah P. ◽  
K. Satya Prasad

Purpose Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications. Design/methodology/approach The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%. Findings The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays. Originality/value The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.


2014 ◽  
Vol 117 (2) ◽  
pp. 705-711 ◽  
Author(s):  
Lana Damaj ◽  
Anne-Claire Lepage ◽  
Xavier Begaud

Sign in / Sign up

Export Citation Format

Share Document