An Automatic Calibration Method for Kerf Angle in Wafer Automated Optical Inspection

2021 ◽  
Author(s):  
Chao Meng ◽  
Jinfei Shi ◽  
Fei Hao ◽  
Yuan Chao
2021 ◽  
Vol 11 (13) ◽  
pp. 6017
Author(s):  
Gerivan Santos Junior ◽  
Janderson Ferreira ◽  
Cristian Millán-Arias ◽  
Ramiro Daniel ◽  
Alberto Casado Junior ◽  
...  

Cracks are pathologies whose appearance in ceramic tiles can cause various damages due to the coating system losing water tightness and impermeability functions. Besides, the detachment of a ceramic plate, exposing the building structure, can still reach people who move around the building. Manual inspection is the most common method for addressing this problem. However, it depends on the knowledge and experience of those who perform the analysis and demands a long time and a high cost to map the entire area. This work focuses on automated optical inspection to find faults in ceramic tiles performing the segmentation of cracks in ceramic images using deep learning to segment these defects. We propose an architecture for segmenting cracks in facades with Deep Learning that includes an image pre-processing step. We also propose the Ceramic Crack Database, a set of images to segment defects in ceramic tiles. The proposed model can adequately identify the crack even when it is close to or within the grout.


2018 ◽  
Vol 10 (9) ◽  
pp. 1336 ◽  
Author(s):  
Ling Wang ◽  
Xiuqing Hu ◽  
Lin Chen ◽  
Lingli He

The FengYun-3 (FY-3) Visible Infrared Radiometer (VIRR), along with its predecessor, the Multispectral Visible Infrared Scanning Radiometer (MVISR), onboard the FY-1C and FY-1D, has collected continuous daily global observations for 18 years. Achieving accurate and consistent calibration for VIRR reflective solar bands (RSBs) has been challenging, as there is no onboard calibrator and the frequency of in situ vicarious calibration is limited. In this study, a new set of reflectance calibration coefficients were derived for RSBs of the FY-3A, FY-3B, and FY-3C VIRRs using a multisite (MST) calibration method. This method is an extension of a previous MST calibration method, which relies on radiative transfer modeling over the multiple stable earth sites, and no synchronous in situ measurements are needed; hence, it can be used to update the VIRR calibration on a daily basis. The on-orbit radiometric changes of the VIRR onboard the FY-3 series were assessed based on analyses of new sets of calibration slopes. Then, all recalibrated VIRR reflectance data over Libya 4, the most frequently used stable Earth site, were compared with those provided from the Level 1B (L1B) product. Additional validation was performed by comparing the recalibrated VIRR data with those derived from radiative transfer simulations using measurements from automatic calibration instruments in Dunhuang. The results indicate that the radiometric response changes of the VIRRs onboard FY-3A and FY-3B were larger than those of FY-3C VIRR and were wavelength dependent. The current approach can provide consistent VIRR reflectances across different FY-3 satellite platforms. After recalibration, differences in top-of-atmosphere (TOA) reflectance data across different VIRRs during the whole lifetime decreased from 5–10% to less than 3%. The comparison with the automatic calibration method indicates that MST calibration shows good accuracy and lower temporal oscillations.


2012 ◽  
Vol 468-471 ◽  
pp. 1490-1494
Author(s):  
Qi Ren ◽  
Tian Fei Ren

ABSTRACT:It introduces a kind of an Automatic Calibration System, especially for long-term drift of oil tank gauging system. long-term drift serious influence on measuring the accuracy and reliability of the system. With theory of Hydrostatic Tank Gauging[1](HTG),as soon as the long-term drift occurring, the detection drift of oil pressure valueΔp will drift,and soon other the parameters of tank Gauging will be occurred. Because the value of Δp is difficult to directly determine, This paper puts forward a kind of automatic calibration method to obtain Δp according to the fuel level drift Δh) indirectly,By means of the HTG double level switches and fuzzy control theory. At last, by MATLAB simulation verify the correctness of the system design.


2015 ◽  
Vol 82 (5) ◽  
Author(s):  
Max-Gerd Retzlaff ◽  
Josua Stabenow ◽  
Jürgen Beyerer ◽  
Carsten Dachsbacher

AbstractWhen designing or improving systems for automated optical inspection (AOI), systematic evaluation is an important but costly necessity to achieve and ensure high quality. Computer graphics methods can be used to quickly create large virtual sets of samples of test objects and to simulate image acquisition setups. We use procedural modeling techniques to generate virtual objects with varying appearance and properties, mimicking real objects and sample sets. Physical simulation of rigid bodies is deployed to simulate the placement of virtual objects, and using physically-based rendering techniques we create synthetic images. These are used as input to an AOI system instead of physically acquired images. This enables the development, optimization, and evaluation of the image processing and classification steps of an AOI system independently of a physical realization. We demonstrate this approach for shards of glass, as sorting glass is one challenging practical application for AOI.


2019 ◽  
Vol 9 (11) ◽  
pp. 2182 ◽  
Author(s):  
Han Yuan ◽  
Xianghui You ◽  
Yongqing Zhang ◽  
Wenjing Zhang ◽  
Wenfu Xu

Cable-driven parallel robots are suitable candidates for rehabilitation due to their intrinsic flexibility and adaptability, especially considering the safety of human–robot interaction. However, there are still some challenges to apply cable-driven parallel robots to rehabilitation, one of which is the geometric calibration. This paper proposes a new automatic calibration method that is applicable for cable-driven parallel rehabilitation robots. The key point of this method is to establish the mapping between the unknown parameters to be calibrated and the parameters that could be measured by the inner sensors and then use least squares algorithm to find the solutions. Specifically, the unknown parameters herein are the coordinates of the attachment points, and the measured parameters are the lengths of the redundant cables. Simulations are performed on a 3-DOF parallel robot driven by four cables for validation. Results show that the proposed calibration method could precisely find the real coordinate values of the attachment points, with errors less than 10 − 12 mm. Trajectory simulations also indicate that the positioning accuracy of the cable-driven parallel robot (CDPR) could be greatly improved after calibration using the proposed method.


2016 ◽  
Vol 55 (4) ◽  
pp. 043111 ◽  
Author(s):  
Yinsen Luan ◽  
Xing He ◽  
Bing Xu ◽  
Ping Yang ◽  
Guomao Tang

Sign in / Sign up

Export Citation Format

Share Document