rehabilitation robots
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 87)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xiali Xue ◽  
Xinwei Yang ◽  
Zhongyi Deng ◽  
Huan Tu ◽  
Dezhi Kong ◽  
...  

Background: In recent years, with the development of medical science and artificial intelligence, research on rehabilitation robots has gained more and more attention, for nearly 10 years in the Web of Science database by journal of rehabilitation robot-related research literature analysis, to parse and track rehabilitation robot research hotspot and front, and provide some guidance for future research.Methods: This study employed computer retrieval of rehabilitation robot-related research published in the core data collection of the Web of Science database from 2010 to 2020, using CiteSpace 5.7 visualization software. The hotspots and frontiers of rehabilitation robot research are analyzed from the aspects of high-influence countries or regions, institutions, authors, high-frequency keywords, and emergent words.Results: A total of 3,194 articles were included. In recent years, the research on rehabilitation robots has been continuously hot, and the annual publication of relevant literature has shown a trend of steady growth. The United States ranked first with 819 papers, and China ranked second with 603 papers. Northwestern University ranked first with 161 publications. R. Riener, a professor at the University of Zurich, Switzerland, ranked as the first author with 48 articles. The Journal of Neural Engineering and Rehabilitation has the most published research, with 211 publications. In the past 10 years, research has focused on intelligent control, task analysis, and the learning, performance, and reliability of rehabilitation robots to realize the natural and precise interaction between humans and machines. Research on neural rehabilitation robots, brain–computer interface, virtual reality, flexible wearables, task analysis, and exoskeletons has attracted more and more attention.Conclusions: At present, the brain–computer interface, virtual reality, flexible wearables, task analysis, and exoskeleton rehabilitation robots are the research trends and hotspots. Future research should focus on the application of machine learning (ML), dimensionality reduction, and feature engineering technologies in the research and development of rehabilitation robots to improve the speed and accuracy of algorithms. To achieve wide application and commercialization, future rehabilitation robots should also develop toward mass production and low cost. We should pay attention to the functional needs of patients, strengthen multidisciplinary communication and cooperation, and promote rehabilitation robots to better serve the rehabilitation medical field.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 323
Author(s):  
Ying-Chi Liu ◽  
Kosuke Irube ◽  
Yukio Takeda

When designing rehabilitation robots, there remains the challenge of ensuring the comfort and safety of users, especially for wearable rehabilitation robots that interact with human limbs. In this paper, we present a kineto-static analysis of the 3-RPS parallel wrist rehabilitation robot, taking into account the soft characteristics of the human limb and its kinematic mobility. First, the human upper-limb model was made to estimate the interaction force and moment through inverse kinematic analysis. Second, a static analysis was conducted to obtain the force and moment acting on the human limb, which is directly related to the user’s comfort and safety. Then, the design parameters of the 3-RPS robot were obtained by generic optimization through kineto-static analysis. Finally, the influence of the parasitic motion of the 3-RPS robot and the initial offset between the wrist center and the robot moving platform were discussed. Through the analysis results, we provide effective solutions to ensure the safety and comfort of the user.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 123
Author(s):  
Narek Zakaryan ◽  
Mikayel Harutyunyan ◽  
Yuri Sargsyan

Safe operation, energy efficiency, versatility and kinematic compatibility are the most important aspects in the design of rehabilitation exoskeletons. This paper focuses on the conceptual bio-inspired mechanical design and equilibrium point control (EP) of a new human upper limb exoskeleton. Considering the upper limb as a multi-muscle redundant system, a similar over-actuated but cable-driven mechatronic system is developed to imitate upper limb motor functions. Additional torque adjusting systems at the joints allow users to lift light weights necessary for activities of daily living (ADL) without increasing electric motor powers of the device. A theoretical model of the “ideal” artificial muscle exoskeleton is also developed using Hill’s natural muscle model. Optimal design parameters of the exoskeleton are defined using the differential evolution (DE) method as a technique of a multi-objective optimization. The proposed cable-driven exoskeleton was then fabricated and tested on a healthy subject. Results showed that the proposed system fulfils the desired aim properly, so that it can be utilized in the design of rehabilitation robots. Further studies may include a spatial mechanism design, which is especially important for the shoulder rehabilitation, and development of reinforcement learning control algorithms to provide more efficient rehabilitation treatment.


2021 ◽  
Vol 3 ◽  
Author(s):  
Lutong Li ◽  
Sarah Tyson ◽  
Andrew Weightman

Objective: To understand the reason for low implementation of clinical and home-based rehabilitation robots and their potential.Design: Online questionnaire (November 2020 and February 2021).Subjects: A total of 100 professionals in stroke rehabilitation area were involved (Physiotherapists n = 62, Occupation therapists n = 35).Interventions: Not applicable.Main Measures: Descriptive statistics and thematic content analysis were used to analyze the responses: 1. Participants' details, 2. Professionals' views and experience of using clinical rehabilitation robots, 3. Professionals' expectation and concerns of using home-based rehabilitation robots.Results: Of 100 responses, 37 had experience of rehabilitation robots. Professionals reported that patients enjoyed using them and they increased accessibility, autonomy, and convenience especially when used at home. The main emergent themes were: “aims and objectives for rehabilitation robotics,” “requirements” (functional, software, and safety), “cost,” “patient factors” (contraindications, cautions, and concerns), and “staff issues” (concerns and benefits). The main benefits of rehabilitation robots were that they provided greater choice for therapy, increased the amount/intensity of treatment, and greater motivation to practice. Professionals perceived logistical issues (ease of use, transport, and storage), cost and limited adaptability to patients' needs to be significant barriers to tier use, whilst acknowledging they can reduce staff workload to a certain extent.Conclusion: The main reported benefit of rehabilitation robots were they increased the amount of therapy and practice after stroke. Ease of use and adaptability are the key requirements. High cost and staffing resources were the main barriers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Cheng Wang ◽  
Shutao Zhang ◽  
Jingyan Hu ◽  
Zhejing Huang ◽  
Changcheng Shi

The upper-limb rehabilitation robots can be developed as an efficient tool for motor function assessments. Circle-drawing has been used as a specific task for robot-based motor function measurement. The upper-limb movement-related kinematic and kinetic parameters measured by motion and force sensors embedded in the rehabilitation robots have been widely studied. However, the muscle synergies characterized by multiple surface electromyographic (sEMG) signals in upper limbs during human-robot interaction (HRI) with circle-drawing movements are rarely investigated. In this research, the robot-assisted and constrained circle-drawing movements for upper limb were used to increase the consistency of muscle synergy features. Both clockwise and counterclockwise circle-drawing tasks were implemented by all healthy subjects using right hands. The sEMG signals were recorded from six muscles in upper limb, and nonnegative matrix factorization (NMF) analysis was utilized to obtain muscle synergy information. Both synergy pattern and activation coefficient were calculated to represent the spatial and temporal features of muscle synergies, respectively. The results obtained from the experimental study confirmed that high structural similarity of muscle synergies was found among the subjects during HRI with circle-drawing movement by healthy subjects, which indicates healthy people may share a common underlying muscle control mechanism during constrained upper-limb circle-drawing movement. This study indicates the muscle synergy analysis during the HRI with constrained circle-drawing movement could be considered as a task for upper-limb motor function assessment.


2021 ◽  
Vol 121 ◽  
pp. 19-24
Author(s):  
Xing Li ◽  
Zijiang Zhu ◽  
Nan Shen ◽  
Weihuang Dai ◽  
Yi Hu

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 142
Author(s):  
Xincheng Wang ◽  
Hongbo Wang ◽  
Xinyu Hu ◽  
Yu Tian ◽  
Musong Lin ◽  
...  

Most lower limb rehabilitation robots use fixed training trajectories and lack participation of physiotherapists. In addition, there is a lack of attention on combining direct teaching function with rehabilitation robots, which enables physiotherapists to plan trajectories directly. In this paper, an adaptive direct teaching function with variable load that can be applied to the sitting/lying lower limb rehabilitation robot-II (LLR-II) is proposed. First, the structural design and electrical system of LLR-II are introduced. The dynamic equation of LLR-II considering joint flexibility is derived and analyzed. Then, the impact of joint flexibility on LLR-II is reduced by introducing the intermediate input variables. Based on this, the control law of the dragging teaching stage and the replay stage in the direct teaching function with variable load is designed and the adaptive control strategy eliminates the influence of different patients. In addition, the control law is simulated and verified. Finally, some preliminary experiments of the adaptive direct teaching function with variable load on LLR-II are carried out, and the results showed that the control law has good performance, which lays the foundation for future work.


Sign in / Sign up

Export Citation Format

Share Document