scholarly journals WaFFLe

2021 ◽  
Vol 18 (4) ◽  
pp. 1-25
Author(s):  
Shounak Chakraborty ◽  
Magnus Själander

Managing thermal imbalance in contemporary chip multi-processors (CMPs) is crucial in assuring functional correctness of modern mobile as well as server systems. Localized regions with high activity, e.g., register files, ALUs, FPUs, and so on, experience higher temperatures than the average across the chip and are commonly referred to as hotspots. Hotspots affect functional correctness of the underlying circuitry and a noticeable increase in leakage power, which in turn generates heat in a self-reinforced cycle. Techniques that reduce the severity of or completely eliminate hotspots can maintain functional correctness along with improving performance of CMPs. Conventional dynamic thermal management targets the cores to reduce hotspots but often ignores caches, which are known for their high leakage power consumption. This article presents WaFFLe , an approach that targets the leakage power of the last-level cache (LLC) and hotspots occurring at the cores. WaFFLe turns off LLC-ways to reduce leakage power and to generate on-chip thermal buffers. In addition, fine-grained DVFS is applied during long LLC miss induced stalls to reduce core temperature. Our results show that WaFFLe reduces peak and average temperature of a 16-core based homogeneous tiled CMP with up to 8.4 ֯ C and 6.2 ֯ C, respectively, with an average performance degradation of only 2.5 %. We also show that WaFFLe outperforms a state-of-the-art cache-based technique and a greedy DVFS policy.

2016 ◽  
Vol 65 (10) ◽  
pp. 3136-3147 ◽  
Author(s):  
Anastasios Psarras ◽  
Ioannis Seitanidis ◽  
Chrysostomos Nicopoulos ◽  
Giorgos Dimitrakopoulos
Keyword(s):  

2009 ◽  
Vol 7 (44) ◽  
pp. 397-408 ◽  
Author(s):  
William Rowe ◽  
Mark Platt ◽  
David C. Wedge ◽  
Philip J. Day ◽  
Douglas B. Kell ◽  
...  

Properties of biological fitness landscapes are of interest to a wide sector of the life sciences, from ecology to genetics to synthetic biology. For biomolecular fitness landscapes, the information we currently possess comes primarily from two sources: sparse samples obtained from directed evolution experiments; and more fine-grained but less authentic information from ‘ in silico ’ models (such as NK -landscapes). Here we present the entire protein-binding profile of all variants of a nucleic acid oligomer 10 bases in length, which we have obtained experimentally by a series of highly parallel on-chip assays. The resulting complete landscape of sequence-binding pairs, comprising more than one million binding measurements in duplicate, has been analysed statistically using a number of metrics commonly applied to synthetic landscapes. These metrics show that the landscape is rugged, with many local optima, and that this arises from a combination of experimental variation and the natural structural properties of the oligonucleotides.


Sign in / Sign up

Export Citation Format

Share Document