leakage power
Recently Published Documents


TOTAL DOCUMENTS

730
(FIVE YEARS 94)

H-INDEX

33
(FIVE YEARS 1)

10.6036/10108 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 79-84
Author(s):  
RUBAN GLADWIN ◽  
NEHRU KASTHURI

The smart Internet of Things (IoT) network relies heavily on data transmission over wireless channels. Hence, it should be designed to be robust against the attacks from hackers and antagonists. The confidentiality in IoT devices is directly proportional to the complexity and power consumption. To mitigate these issues, this paper proposes a secure Substitution Box (S-Box) design that is exploited in the IoT for cyber security applications. The S-Box is based on Gated Hybrid Energy Recovery Logic (GHERL) that is an amalgamation of two different techniques as adiabatic logic and power gating. Adiabatic logic is preferred to attain high energy efficiency in practical applications such as portable and handheld devices. Power gating technique is preferred to reduce the leakage power and energy consumption. The proposed GHERL XOR gate and S-Box are implemented with 125nm technology in Tanner EDA tool. The consequences of the experiments exhibits that the novel S-Box design with GHERL XOR decreases the power consumption by 1.76%, 35.26%, 36.81%, 41.01% and reduces the leakage power by 58.54%, 20.27%, 27.38%, 13.63% when compared with the existing techniques such as S-Box with sleep transistor, dual sleep transistor, dual-stack and sleepy keeper approach. Keywords: Adiabatic logic, Power Gating, Internet of Things, S-Box


2021 ◽  
Vol 18 (4) ◽  
pp. 1-25
Author(s):  
Shounak Chakraborty ◽  
Magnus Själander

Managing thermal imbalance in contemporary chip multi-processors (CMPs) is crucial in assuring functional correctness of modern mobile as well as server systems. Localized regions with high activity, e.g., register files, ALUs, FPUs, and so on, experience higher temperatures than the average across the chip and are commonly referred to as hotspots. Hotspots affect functional correctness of the underlying circuitry and a noticeable increase in leakage power, which in turn generates heat in a self-reinforced cycle. Techniques that reduce the severity of or completely eliminate hotspots can maintain functional correctness along with improving performance of CMPs. Conventional dynamic thermal management targets the cores to reduce hotspots but often ignores caches, which are known for their high leakage power consumption. This article presents WaFFLe , an approach that targets the leakage power of the last-level cache (LLC) and hotspots occurring at the cores. WaFFLe turns off LLC-ways to reduce leakage power and to generate on-chip thermal buffers. In addition, fine-grained DVFS is applied during long LLC miss induced stalls to reduce core temperature. Our results show that WaFFLe reduces peak and average temperature of a 16-core based homogeneous tiled CMP with up to 8.4 ֯ C and 6.2 ֯ C, respectively, with an average performance degradation of only 2.5 %. We also show that WaFFLe outperforms a state-of-the-art cache-based technique and a greedy DVFS policy.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7651
Author(s):  
Zachary Kahleifeh ◽  
Himanshu Thapliyal

Internet of Things (IoT) devices have strict energy constraints as they often operate on a battery supply. The cryptographic operations within IoT devices consume substantial energy and are vulnerable to a class of hardware attacks known as side-channel attacks. To reduce the energy consumption and defend against side-channel attacks, we propose combining adiabatic logic and Magnetic Tunnel Junctions to form our novel Energy Efficient-Adiabatic CMOS/MTJ Logic (EE-ACML). EE-ACML is shown to be both low energy and secure when compared to existing CMOS/MTJ architectures. EE-ACML reduces dynamic energy consumption with adiabatic logic, while MTJs reduce the leakage power of a circuit. To show practical functionality and energy savings, we designed one round of PRESENT-80 with the proposed EE-ACML integrated with an adiabatic clock generator. The proposed EE-ACML-based PRESENT-80 showed energy savings of 67.24% at 25 MHz and 86.5% at 100 MHz when compared with a previously proposed CMOS/MTJ circuit. Furthermore, we performed a CPA attack on our proposed design, and the key was kept secret.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012080
Author(s):  
M. Srinivas ◽  
K.V. Daya Sagar

Abstract Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.


2021 ◽  
Author(s):  
Ajay Kumar Dadoria ◽  
Narendra Kumar Garg ◽  
Vivek Singh Kushwah ◽  
Manisha Pattanaik

Abstract With the quick progress in the area of digital electronics results in miniaturization of semiconductor Industries. In Deep Sub Micron regime, because of leakage current, power consumption is turn out to be a major issue; hence constant efforts are being made by the researchers for investigating the various ways to minimize this. There are various methods available for the same and out of several available methods use of Carbon Nano-tube technology is a promising way to design low power circuits efficiently. Here new techniques are introduced for the reduction of leakage power. Here in this work, comparison of the main performance parameters of Copper on chip nano-interconnect with CNTFET has been done. We have measured the impact of ION and IOFF current by applying Process variation in CU and CNT- Interconnects with the variation of Tubes at 32nm technology and analysed the performance of the digital circuits with scaling of technology. The different kind of simulation outcomes indicates that by applying 10% of deviation from normal value in different device characteristics parameters such as Length of Gate (LTube) of the Tube, Width (WTube) of the Tube, Threshold Voltage (Vth) of the Tube, Thickness (tot) of Tube and Source & Drain Doping concentration with Cu and CNTFET interconnects for NFET and PFET with the variation of tubes from 1 to 16. All the experimental outcomes are achieved by using HSPICE simulator using SPICE model of CU and CNT at27oC temperature by using 32nm Berkley Predictive Technology module.


2021 ◽  
Author(s):  
anil rajput ◽  
Manisha Pattanaik ◽  
Gaurav Kaushal

The In-Memory Computing (IMC) architecture based on 6T, 8T, 10T SRAM fails under process-variation and suffers from compute-disturb, compute-failure, half-select issue, respectively, which affect the reliability of IMC operation. To overcome these problems, local bit-line sharing Dual-Port 8T (SDP8T) SRAM with Virtual VSS is proposed to improve the stability and energy efficiency of IMC architecture. The decouple read-write path with high-Vth transistor is used to improve the read-margin by 2.11× and reduce the read-energy by 36.35% as compared to Transpose-8T SRAM. The virtual VSS write assist is used in SDP8T SRAM to improve the write-margin by 26.49%, and lower the leakage power by 47.95% as compared to Transpose-8T SRAM. Furthermore, IMC architecture is proposed using SDP8T SRAM. In addition to the SRAM function, SDP8T-IMC architecture performs In-memory Boolean computation(IMBC) operations without compute-disturbance and compute-failure. The remarkable feature of SDP8T-IMC architecture is that it performs IMBC operation on four operands simultaneously using all four bit-line ports in a single cycle, thus doubling the throughput and obtain 11.04 fJ/bit average energy consumption at 1 V supply. The maximum operating frequency of the proposed IMC architecture is 1050 MHz at 1 V. Cumulatively, the proposed SDP8T-IMC architecture has 32.22%, 27.03%, 60.10%, 50.93%, 60.48%, 35.05%, and 65.28% reduction in energy consumption as compared to C6T, 6TCSRAM, 8+T, 8T, 10T, 12T, and 4+2T SRAM based IMC architectures, respectively. Moreover, the proposed IMC architecture is configured as Binary Content Addressable Memory (BCAM) for searching applications which achieves 0.60fJ energy consumption per search/bit at 1 V.


2021 ◽  
Author(s):  
anil rajput ◽  
Manisha Pattanaik ◽  
Gaurav Kaushal

The In-Memory Computing (IMC) architecture based on 6T, 8T, 10T SRAM fails under process-variation and suffers from compute-disturb, compute-failure, half-select issue, respectively, which affect the reliability of IMC operation. To overcome these problems, local bit-line sharing Dual-Port 8T (SDP8T) SRAM with Virtual VSS is proposed to improve the stability and energy efficiency of IMC architecture. The decouple read-write path with high-Vth transistor is used to improve the read-margin by 2.11× and reduce the read-energy by 36.35% as compared to Transpose-8T SRAM. The virtual VSS write assist is used in SDP8T SRAM to improve the write-margin by 26.49%, and lower the leakage power by 47.95% as compared to Transpose-8T SRAM. Furthermore, IMC architecture is proposed using SDP8T SRAM. In addition to the SRAM function, SDP8T-IMC architecture performs In-memory Boolean computation(IMBC) operations without compute-disturbance and compute-failure. The remarkable feature of SDP8T-IMC architecture is that it performs IMBC operation on four operands simultaneously using all four bit-line ports in a single cycle, thus doubling the throughput and obtain 11.04 fJ/bit average energy consumption at 1 V supply. The maximum operating frequency of the proposed IMC architecture is 1050 MHz at 1 V. Cumulatively, the proposed SDP8T-IMC architecture has 32.22%, 27.03%, 60.10%, 50.93%, 60.48%, 35.05%, and 65.28% reduction in energy consumption as compared to C6T, 6TCSRAM, 8+T, 8T, 10T, 12T, and 4+2T SRAM based IMC architectures, respectively. Moreover, the proposed IMC architecture is configured as Binary Content Addressable Memory (BCAM) for searching applications which achieves 0.60fJ energy consumption per search/bit at 1 V.


Author(s):  
Vijay Kumar Sharma

Carbon nanotube field effect transistors (CNTFETs) are the best alternative option for the metal oxide semiconductor field effect transistor (MOSFET) in the ultra-deep submicron (ultra-DSM) regime. CNTFET has numerous benefits such as lower off-state current, high current density, low bias potential and better transport property as compared to MOSFET. A rolled graphene sheet-based cylindrical tube is constructed in the channel region of the CNTFET structure. In this paper, an improved domino logic (IDL) configuration is proposed for domino logic circuits to improve the different performance metrics. An extensive comparative simulation analysis is provided for the different performance metrics for different circuits to verify the novelty of the proposed IDL approach. The IDL approach saves the leakage power dissipation by 95.61% and enhances the speed by 87.10% for the 4-bit full adder circuit as compared to the best reported available domino method. The effects of the number of carbon nanotubes (CNTs), temperature, and power supply voltage variations are estimated for leakage power dissipation for the 16-input OR (OR16) gate. The reliability of different performance metrics for different circuit is calculated in terms of uncertainty by running the Monte Carlo simulations for 500 samples. Stanford University’s 32[Formula: see text]nm CNTFET model is applied for circuit simulations.


Sign in / Sign up

Export Citation Format

Share Document