scholarly journals SortCache

2021 ◽  
Vol 18 (4) ◽  
pp. 1-24
Author(s):  
Sriseshan Srikanth ◽  
Anirudh Jain ◽  
Thomas M. Conte ◽  
Erik P. Debenedictis ◽  
Jeanine Cook

Sparse data applications have irregular access patterns that stymie modern memory architectures. Although hyper-sparse workloads have received considerable attention in the past, moderately-sparse workloads prevalent in machine learning applications, graph processing and HPC have not. Where the former can bypass the cache hierarchy, the latter fit in the cache. This article makes the observation that intelligent, near-processor cache management can improve bandwidth utilization for data-irregular accesses, thereby accelerating moderately-sparse workloads. We propose SortCache, a processor-centric approach to accelerating sparse workloads by introducing accelerators that leverage the on-chip cache subsystem, with minimal programmer intervention.

2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Victorien Delannée ◽  
Marc C. Nicklaus

AbstractIn the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we present ReactionCode: a new open-source format that allows one to encode and decode a reaction into multi-layer machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc C. Nicklaus

Abstract In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts ha ve been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2019 ◽  
pp. 1-4
Author(s):  
Lavanya Vemulapalli

Machine Learning plays a significant role among the areas of Artificial Intelligence (AI). During recent years, Machine Learning (ML) has been attracting many researchers, and it has been successfully applied in many fields such as medical, education, forecasting etc., Right now, the diagnosis of diseases is mostly from expert's decision. Diagnosis is a major task in clinical science as it is crucial in determining if a patient is having the disease or not. This in turn decides the suitable path of treatment for disease diagnosis. Applying machine learning techniques for disease diagnosis using intelligent algorithms has been a hot research area of computer science. This paper throws a light on the comprehensive survey on the machine learning applications in the medical disease prognosis during the past decades


PROTEOMICS ◽  
2014 ◽  
Vol 14 (4-5) ◽  
pp. 353-366 ◽  
Author(s):  
Pieter Kelchtermans ◽  
Wout Bittremieux ◽  
Kurt De Grave ◽  
Sven Degroeve ◽  
Jan Ramon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document