condensed graph of reaction
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 11)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Esther Heid ◽  
William H. Green

The estimation of chemical reaction properties such as activation energies, rates or yields is a central topic of computational chemistry. In contrast to molecular properties, where machine learning approaches such as graph convolutional neural networks (GCNNs) have excelled for a wide variety of tasks, no general and transferable adaptations of GCNNs for reactions have been developed yet. We therefore combined a popular cheminformatics reaction representation, the so-called condensed graph of reaction (CGR), with a recent GCNN architecture to arrive at a versatile, robust and compact deep learning model. The CGR is a superposition of the reactant and product graphs of a chemical reaction, and thus an ideal input for graph-based machine learning approaches. The model learns to create a data-driven, task dependent reaction embedding that does not rely on expert knowledge, similar to current molecular GCNNs. Our approach outperforms current state-of-the-art models in accuracy, is applicable even to imbalanced reactions and possesses excellent predictive capabilities for diverse target properties, such as activation energies, reaction enthalpies, rate constants, yields or reaction classes. We furthermore curated a large set of atom-mapped reactions along with their target properties, which can serve as benchmark datasets for future work. All datasets and the developed reaction GCNN model are available online, free of charge and open-source.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Victorien Delannée ◽  
Marc C. Nicklaus

AbstractIn the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we present ReactionCode: a new open-source format that allows one to encode and decode a reaction into multi-layer machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc C. Nicklaus

Abstract In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts ha ve been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
Victorien Delannée ◽  
Marc Nicklaus

In the past two decades a lot of different formats for molecules and reactions have been created. These formats were mostly developed for the purposes of identifiers, representation, classification, analysis and data exchange. A lot of efforts have been made on molecule formats but only few for reactions where the endeavors have been made mostly by companies leading to proprietary formats. Here, we developed a new open-source format which allows to encode and decode a reaction into multi-layers machine readable code, which aggregates reactants and products into a condensed graph of reaction (CGR). This format is flexible and can be used in a context of reaction similarity searching and classification. It is also designed for database organization, machine learning applications and as a new transform reaction language.


2020 ◽  
Author(s):  
William Bort ◽  
Igor I. Baskin ◽  
Pavel Sidorov ◽  
Gilles Marcou ◽  
Dragos Horvath ◽  
...  

Here, we report an application of Artificial Intelligence techniques to generate novel chemical reactions of the given type. A sequence-to-sequence autoencoder was trained on the USPTO reaction database. Each reaction was converted into a single Condensed Graph of Reaction (CGR), followed by their translation into on-purpose developed SMILES/GGR text strings. The autoencoder latent space was visualized on the two-dimensional generative topographic map, from which some zones populated by Suzuki coupling reactions were targeted. These served for the generation of novel reactions by sampling the latent space points and decoding them to SMILES/CGR.<br>


2020 ◽  
Author(s):  
William Bort ◽  
Igor I. Baskin ◽  
Pavel Sidorov ◽  
Gilles Marcou ◽  
Dragos Horvath ◽  
...  

Here, we report an application of Artificial Intelligence techniques to generate novel chemical reactions of the given type. A sequence-to-sequence autoencoder was trained on the USPTO reaction database. Each reaction was converted into a single Condensed Graph of Reaction (CGR), followed by their translation into on-purpose developed SMILES/GGR text strings. The autoencoder latent space was visualized on the two-dimensional generative topographic map, from which some zones populated by Suzuki coupling reactions were targeted. These served for the generation of novel reactions by sampling the latent space points and decoding them to SMILES/CGR.<br>


Sign in / Sign up

Export Citation Format

Share Document