scholarly journals Discovering Mixture-Based Best Regions of Arbitrary Shapes

2021 ◽  
Author(s):  
Dimitrios Skoutas ◽  
Dimitris Sacharidis ◽  
Kostas Patroumpas
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


2007 ◽  
Vol 189 (23) ◽  
pp. 8704-8707 ◽  
Author(s):  
Peter Galajda ◽  
Juan Keymer ◽  
Paul Chaikin ◽  
Robert Austin

ABSTRACT Randomly moving but self-propelled agents, such as Escherichia coli bacteria, are expected to fill a volume homogeneously. However, we show that when a population of bacteria is exposed to a microfabricated wall of funnel-shaped openings, the random motion of bacteria through the openings is rectified by tracking (trapping) of the swimming bacteria along the funnel wall. This leads to a buildup of the concentration of swimming cells on the narrow opening side of the funnel wall but no concentration of nonswimming cells. Similarly, we show that a series of such funnel walls functions as a multistage pump and can increase the concentration of motile bacteria exponentially with the number of walls. The funnel wall can be arranged along arbitrary shapes and cause the bacteria to form well-defined patterns. The funnel effect may also have implications on the transport and distribution of motile microorganisms in irregular confined environments, such as porous media, wet soil, or biological tissue, or act as a selection pressure in evolution experiments.


Author(s):  
Shangbang Long ◽  
Jiaqiang Ruan ◽  
Wenjie Zhang ◽  
Xin He ◽  
Wenhao Wu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document