Competitive Algorithms for Online Multidimensional Knapsack Problems

Author(s):  
Lin Yang ◽  
Ali Zeynali ◽  
Mohammad H. Hajiesmaili ◽  
Ramesh K. Sitaraman ◽  
Don Towsley

In this paper, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem and finds several relevant applications such as in virtual machine allocation, job scheduling, and all-or-nothing flow maximization over a graph. We develop two algorithms for OMdKP that use linear and exponential reservation functions to make online admission decisions. Our competitive analysis shows that the linear and exponential algorithms achieve the competitive ratios of O(θα ) and O(łogł(θα)), respectively, where α is the ratio between the aggregate knapsack capacity and the minimum capacity over a single dimension and θ is the ratio between the maximum and minimum item unit values. We also characterize a lower bound for the competitive ratio of any online algorithm solving OMdKP and show that the competitive ratio of our algorithm with exponential reservation function matches the lower bound up to a constant factor.

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1126
Author(s):  
Marta Lilia Eraña-Díaz ◽  
Marco Antonio Cruz-Chávez ◽  
Fredy Juárez-Pérez ◽  
Juana Enriquez-Urbano ◽  
Rafael Rivera-López ◽  
...  

This paper presents a methodological scheme to obtain the maximum benefit in occupational health by attending to psychosocial risk factors in a company. This scheme is based on selecting an optimal subset of psychosocial risk factors, considering the departments’ budget in a company as problem constraints. This methodology can be summarized in three steps: First, psychosocial risk factors in the company are identified and weighted, applying several instruments recommended by business regulations. Next, a mathematical model is built using the identified psychosocial risk factors information and the company budget for risk factors attention. This model represents the psychosocial risk optimization problem as a Multidimensional Knapsack Problem (MKP). Finally, since Multidimensional Knapsack Problem is NP-hard, one simulated annealing algorithm is applied to find a near-optimal subset of factors maximizing the psychosocial risk care level. This subset is according to the budgets assigned for each of the company’s departments. The proposed methodology is detailed using a case of study, and thirty instances of the Multidimensional Knapsack Problem are tested, and the results are interpreted under psychosocial risk problems to evaluate the simulated annealing algorithm’s performance (efficiency and efficacy) in solving these optimization problems. This evaluation shows that the proposed methodology can be used for the attention of psychosocial risk factors in real companies’ cases.


2017 ◽  
Vol 22 (8) ◽  
pp. 2567-2582 ◽  
Author(s):  
Luis Fernando Mingo López ◽  
Nuria Gómez Blas ◽  
Alberto Arteta Albert

1995 ◽  
Vol 05 (04) ◽  
pp. 635-646 ◽  
Author(s):  
MICHAEL A. PALIS ◽  
JING-CHIOU LIOU ◽  
SANGUTHEVAR RAJASEKARAN ◽  
SUNIL SHENDE ◽  
DAVID S.L. WEI

The scheduling problem for dynamic tree-structured task graphs is studied and is shown to be inherently more difficult than the static case. It is shown that any online scheduling algorithm, deterministic or randomized, has competitive ratio Ω((1/g)/ log d(1/g)) for trees with granularity g and degree at most d. On the other hand, it is known that static trees with arbitrary granularity can be scheduled to within twice the optimal schedule. It is also shown that the lower bound is tight: there is a deterministic online tree scheduling algorithm that has competitive ratio O((1/g)/ log d(1/g)). Thus, randomization does not help.


Sign in / Sign up

Export Citation Format

Share Document