scholarly journals Cryptogenic Cerebrospinal Fluid Leaks in Spontaneous Intracranial Hypotension: Role of Dynamic CT Myelography

Radiology ◽  
2018 ◽  
Vol 289 (3) ◽  
pp. 766-772 ◽  
Author(s):  
Tomas Dobrocky ◽  
Pascal J. Mosimann ◽  
Felix Zibold ◽  
Pasquale Mordasini ◽  
Andreas Raabe ◽  
...  
2011 ◽  
Vol 33 (4) ◽  
pp. 690-694 ◽  
Author(s):  
P.H. Luetmer ◽  
K.M. Schwartz ◽  
L.J. Eckel ◽  
C.H. Hunt ◽  
R.E. Carter ◽  
...  

1996 ◽  
Vol 84 (4) ◽  
pp. 598-605 ◽  
Author(s):  
Wouter I. Schievink ◽  
Fredric B. Meyer ◽  
John L. D. Atkinson ◽  
Bahram Mokri

✓ Spinal cerebrospinal fluid (CSF) leaks are often implicated as the cause of the syndrome of spontaneous intracranial hypotension, but they have rarely been demonstrated radiographically or surgically. The authors reviewed their experience with documented cases of spinal CSF leaks of spontaneous onset in 11 patients including their surgical observations in four of the patients. The mean age of the six women and five men included in the study was 38 years (range 22–51 years). All patients presented with a postural headache; however, most had additional symptoms, including nausea, emesis, sixth cranial-nerve paresis, or local back pain at the level of the CSF leak. All patients underwent indium-111 radionucleotide cisternography or computerized tomographic (CT) myelography. The location of the spontaneous CSF leak was in the cervical spine in two patients, the cervicothoracic junction in three patients, the thoracic spine in five patients, and the lumbar spine in one patient. The false negative rate for radionucleotide cisternography was high (30%). Subdural fluid collections, meningeal enhancement, and downward displacement of the cerebellum, resembling a Chiari I malformation, were commonly found on cranial imaging studies. In most patients, the symptoms resolved in response to supportive measures or an epidural blood patch. Leaking meningeal diverticula were found to be the cause of the CSF leak in four patients who underwent surgery. In three patients these diverticula could be ligated with good result but in one patient an extensive complex of meningeal diverticula was found to be inoperable. Two patients had an unusual body habitus and joint hypermobility, and two other patients had suffered a spontaneous retinal detachment at a young age. In conclusion, spontaneous spinal CSF leaks are uncommon, but they are increasingly recognized as a cause of spontaneous intracranial hypotension. Most spinal CSF leaks are located at the cervicothoracic junction or in the thoracic spine, and they may be associated with meningeal diverticula. The radiographic study of choice is CT myelography. The disease is usually self-limiting, but in selected cases our experience with surgical ligation of leaking meningeal diverticula has been satisfactory. An underlying connective tissue disorder may be present in some patients with a spontaneous spinal CSF leak.


Cephalalgia ◽  
2020 ◽  
pp. 033310242095038
Author(s):  
Jr-Wei Wu ◽  
Yen-Feng Wang ◽  
Shu-Shya Hseu ◽  
Shu-Ting Chen ◽  
Yung-Lin Chen ◽  
...  

Objectives In the application of the Monro-Kellie doctrine in spontaneous intracranial hypotension, the brain tissue volume is generally considered as a fixed constant. Traditionally, cerebral venous dilation is thought to compensate for decreased cerebrospinal fluid. However, whether brain tissue volume is invariable has not yet been explored. The objective of this study is to evaluate whether brain tissue volume is fixed or variable in spontaneous intracranial hypotension patients using automatic quantitative methods. Methods This retrospective and longitudinal study analyzed spontaneous intracranial hypotension patients between 1 January 2007 and 31 July 2015. Voxel-based morphometry was used to examine brain volume changes during and after the resolution of spontaneous intracranial hypotension. Brain structure volume was analyzed using Statistical Parametric Mapping version 12 and FMRIB Software Library v6.0. Post-treatment neuroimages were used as surrogate baseline measures. Results Forty-four patients with spontaneous intracranial hypotension were analyzed (mean [standard deviation] age, 37.8 [8.5] years; 32 female and 12 male). The whole brain tissue volume was decreased during spontaneous intracranial hypotension compared to follow-up (1180.3 [103.5] mL vs. 1190.4 [93.1] mL, difference: −10.1 mL [95% confidence interval: −18.4 to −1.8 mL], p = 0.019). In addition, ventricular cerebrospinal fluid volume was decreased during spontaneous intracranial hypotension compared to follow-up (15.8 [6.1] mL vs. 18.9 [6.9] mL, difference: −3.2 mL [95% confidence interval: −4.5 to −1.8 mL], p < 0.001). Longer anterior epidural cerebrospinal fluid collections, as measured by number of vertebral segments, were associated with greater reduction of ventricular cerebrospinal fluid volume (Pearson’s r = −0.32, p = 0.036). Conclusion The current study found the brain tissue volume and ventricular cerebrospinal fluid are decreased in spontaneous intracranial hypotension patients. The change in ventricular cerebrospinal fluid volume, but not brain tissue volume change, was associated with the severity of spinal cerebrospinal fluid leakage. These results challenge the assumption that brain tissue volume is a fixed constant.


Cephalalgia ◽  
2008 ◽  
Vol 28 (12) ◽  
pp. 1345-1356 ◽  
Author(s):  
WI Schievink

Spontaneous intracranial hypotension is an uncommon but not rare cause of new onset daily persistent headaches. A delay in diagnosis is the norm. Women are affected more commonly than men and most are in the fifth or sixth decade of life. The underlying cause is a spontaneous spinal cerebrospinal fluid (CSF) leak. Typically the headache is orthostatic in nature but other headache patterns occur as well. Associated symptoms are common and include neck pain, a change in hearing, diplopia, facial numbness, cognitive abnormalities and even coma. Typical imaging findings consist of subdural fluid collections, pachymeningeal enhancement, pituitary hyperaemia and brain sagging, but magnetic resonance imaging may be normal. Myelography is the study of choice to identify the CSF leak but is not always necessary to make the diagnosis. Treatment consists of bedrest, abdominal binder, epidural blood patching, percutaneous fibrin glue injection or surgical CSF leak repair. Outcomes have been poorly studied.


Sign in / Sign up

Export Citation Format

Share Document