scholarly journals Improved Ionic Conductivity of MgM4P6O24 (M = Hf, Zr) Ceramic Solid-State Electrolytes by Sol-Gel Synthesis

2021 ◽  
Vol 102 (5) ◽  
pp. 19-27
Author(s):  
Mohammed Adamu ◽  
Girish M Kale
2013 ◽  
Vol 28 (11) ◽  
pp. 1255-1260 ◽  
Author(s):  
Zhi-Zhen ZHANG ◽  
Si-Qi SHI ◽  
Yong-Sheng HU ◽  
Li-Quan CHEN

Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2022 ◽  
Vol 896 ◽  
pp. 163084
Author(s):  
Rui Gu ◽  
Jingrui Kang ◽  
Xu Guo ◽  
Jing Li ◽  
Kun Yu ◽  
...  

2019 ◽  
Vol 21 (48) ◽  
pp. 26358-26367
Author(s):  
Hanghui Liu ◽  
Zhenhua Yang ◽  
Qun Wang ◽  
Xianyou Wang ◽  
Xingqiang Shi

A solid-state electrolyte (L7P3S10.25O0.75) with good ionic conductivity and electrochemical stability is successfully designed by oxygen doping.


2020 ◽  
Vol 22 (26) ◽  
pp. 15058-15058
Author(s):  
Natalia Kireeva ◽  
Vladislav S. Pervov

Correction for ‘Materials space of solid-state electrolytes: unraveling chemical composition–structure–ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches’ by Natalia Kireeva et al., Phys. Chem. Chem. Phys., 2017, 19, 20904–20918, DOI: 10.1039/c7cp00518k.


2018 ◽  
Vol 281 ◽  
pp. 774-781
Author(s):  
Ke Shan ◽  
Feng Rui Zhai ◽  
Nan Li ◽  
Zhong Zhou Yi

A single phase perovskite, YxSr1−xTi0.6Fe0.4O3-δ(x=0.06-0.09), was fabricated at 1350°C in air by sol-gel method. The effects of Y-and Fe-doping into SrTiO3on phase structure, electrical conductivity, ionic conductivity and its impedance behavior were investigated. The optimized Y0.07Sr0.93Fe0.4Ti0.6O3-δsample exhibits an electrical conductivity of 0.135 S·cm-1at 800 °C. Y-doping decreases the migration energy for oxygen ions, leading to a significant increase in ionic conductivity. The ionic conductivity of Y0.09Sr0.91Ti0.6Fe0.4O3-δsample varies from 0.0052 S· cm-1at 600°C to 0.02 S·cm-1at 800°C. Impedance characteristics over a wide frequency range of 0.01Hz-100 KHz reveal that the resistance of ionic conduction is predominantly influenced by grain boundary, the relaxation time of which decreases with increase of Y-doping amount.


Sign in / Sign up

Export Citation Format

Share Document