In Situ Corrosion-Resistance Evaluation of Ni-P Anode Electrode for Water Electrolysis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


2021 ◽  
pp. 002199832110237
Author(s):  
V Sivaprakash ◽  
R Narayanan

Fabrication of TiO2 nanotubes (NTs) has extensive application properties due to their high corrosion resistant and compatibility with biomedical applications, the synthesis of TiO2 nanotubes over titanium has drawn interest in various fields. The synthesis of TiO2 NTs using novel in-situ step-up voltage conditions in the electrochemical anodization process is recorded in this work. For manufacturing the NTs at 1 hour of anodization, the input potential of 30, 40 and 50 V was selected. With increasing step-up voltage during the anodization process, an improvement in the NTs was observed, favoring corrosion resistance properties. The surface of NTs enhances the structure of the ribs, raising the potential for feedback over time. XRD was used to analyze phase changes, and HR-SEM analyzed surface topography. Impedance tests found that longer NTs improved the corrosion resistance.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Sign in / Sign up

Export Citation Format

Share Document