electrochemical anodization
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 127)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Sara Al-Waisawy ◽  
Ahmed Kareem Abdullah ◽  
Hadi A. Hamed ◽  
Ali A. Al-bakri

In this research, the pure titanium foil was treated in glycerol base electrolyte with 0.7 wt.% NH4F and a small amount of H2O at 17 V for 2 hours by electrochemical anodization process in order to prepare Titania nanotube arrays at room temperature (~25 ºC), different water content was added to the electrolyte as a tube enhancing agent. The high density uniform arrays are prepared by using organized and well aligned these tubes. The average size of tube diameter, ranging from 57 to 92 nm which found it increases with increasing water content, and the length of the tube ranging from 2.76 to 4.12 µm, also found to increase with increasing water content and ranging in size of wall thickness from 23 to 35 nm. A possible growth mechanism is presented. The X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to study the structure and morphology of the Titania films.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hideki Hashimoto ◽  
Yohei Onodera ◽  
Shuta Tahara ◽  
Shinji Kohara ◽  
Koji Yazawa ◽  
...  

AbstractThe fabrication of novel oxide glass is a challenging topic in glass science. Alumina (Al2O3) glass cannot be fabricated by a conventional melt–quenching method, since Al2O3 is not a glass former. We found that amorphous Al2O3 synthesized by the electrochemical anodization of aluminum metal shows a glass transition. The neutron diffraction pattern of the glass exhibits an extremely sharp diffraction peak owing to the significantly dense packing of oxygen atoms. Structural modeling based on X-ray/neutron diffraction and NMR data suggests that the average Al–O coordination number is 4.66 and confirms the formation of OAl3 triclusters associated with the large contribution of edge-sharing Al–O polyhedra. The formation of edge-sharing AlO5 and AlO6 polyhedra is completely outside of the corner-sharing tetrahedra motif in Zachariasen’s conventional glass formation concept. We show that the electrochemical anodization method leads to a new path for fabricating novel single-component oxide glasses.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3452
Author(s):  
Chiara Gardin ◽  
Letizia Ferroni ◽  
Yaşar Kemal Erdoğan ◽  
Federica Zanotti ◽  
Francesco De Francesco ◽  
...  

(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC). (2) Methods: Three different nanotubular Ti surfaces (TNs manufactured by electrochemical anodization with diameters of 25, 80, or 140 nm) were seeded with human MSCs (hMSCs) and their exosomes were isolated and tested with human umbilical vein endothelial cells (HUVECs) to assess whether TNs can influence the secretory functions of hMSCs and whether these in turn affect endothelial and osteogenic cell activities in vitro. (3) Results: The hMSCs adhered on all TNs and significantly expressed angiogenic-related factors after 7 days of culture when compared to untreated Ti substrates. Nanomodifications of Ti surfaces significantly improved the release of hMSCs exosomes, having dimensions below 100 nm and expressing CD63 and CD81 surface markers. These hMSC-derived exosomes were efficiently internalized by HUVECs, promoting their migration and differentiation. In addition, they selectively released a panel of miRNAs directly or indirectly related to angiogenesis. (4) Conclusions: Preconditioning of hMSCs on TNs induced elevated exosomes secretion that stimulated in vitro endothelial and cell activity, which might improve in vivo angiogenesis, supporting faster scaffold integration.


2021 ◽  
Vol 58 (6) ◽  
pp. 24-34
Author(s):  
A. Knoks ◽  
J. Kleperis ◽  
G. Bajars ◽  
L. Grinberga ◽  
O. Bogdanova

Abstract Two different methods of synthesis of TiO2/WO3 heterostructures were carried out with the aim to increase photocatalytic activity. In this study, anodic TiO2 nanotube films were synthesized by electrochemical anodization of titanium foil. WO3 particles were applied to anodic Ti/TiO2 samples in two different ways – by electrophoretic deposition (EPD) and insertion during the anodization process. Structural and photocatalytic properties were compared between pristine TiO2 and TiO2 with incorporated WO3 particles. Raman mapping was used to character-ise the uniformity of EPD WO3 coating and to determine the structural composition. The study showed that deposition of WO3 onto TiO2 nanotube layer lowered the band gap of the binary system compared to pristine TiO2 and WO3 influence on photo-electrochemical properties of titania. The addition of WO3 increased charge carrier dynamics but did not increase the measured photo-current response. As the WO3 undergoes a phase transition from monoclinic to orthorhombic at approximately 320 ℃ proper sequence WO3 deposition could be beneficial. It was observed that secondary heat treatment of WO3 lowers the photocurrent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2994
Author(s):  
Diego P. Oyarzún ◽  
Alejandra Tello ◽  
Julio Sánchez ◽  
Andrés Boulett ◽  
Omar E. Linarez Pérez ◽  
...  

In this study, we report a low cost, fast and unexplored electrochemical synthesis strategy of copper oxide nanoneedles films as well as their morphological and chemical characterization. The nanostructured films were prepared using electrochemical anodization in alkaline electrolyte solutions of ethylene glycol, water and fluoride ions. The film morphology shows nanoneedle-shaped structures, with lengths up to 1–2 μm; meanwhile, high-resolution X-ray photoelectron spectroscopy (HRXPS) and spectroscopy Raman analyses indicate that a mixture of Cu(II) and Cu(I) oxides, or only Cu(I) oxide, is obtained as the percentage of water in the electrolyte solution decreases. A preliminary study was also carried out for the photocatalytic degradation of the methylene blue (MB) dye under irradiation with simulated sunlight in the presence of the nanoneedles obtained, presenting a maximum degradation value of 88% of MB and, thus, demonstrating the potential characteristics of the material investigated in the degradation of organic dyes.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7317
Author(s):  
Joaquim O. Carneiro ◽  
Artur Ribeiro ◽  
Filipe Miranda ◽  
Iran Rocha Segundo ◽  
Salmon Landi ◽  
...  

This work describes the development of a capacitive-type sensor created from nanoporous anodic aluminium oxide (NP-AAO) prepared by the one-step anodization method conducted in potentiostatic mode and performed in a low-cost homemade system. A series of samples were prepared via an anodization campaign carried out on different acid electrolytes, in which the anodization parameters were adjusted to investigate the effect of pore size and porosity on the capacitive sensing performance. Two sensor test cases are investigated. The first case explores the use of highly uniform NP-AAO structures for humidity sensing applications while the second analyses the use of NP-AAO as a capacitive touch sensor for biological applications, namely, to detect the presence of small “objects” such as bacterial colonies of Escherichia Coli. A mathematical model based on equivalent electrical circuits was developed to evaluate the effect of humidity condensation (inside the pores) on the sensor capacitance and also to estimate the capacitance change of the sensor due to pore blocking by the presence of a certain number of bacterial microorganisms. Regarding the humidity sensing test cases, it was found that the sensitivity of the sensor fabricated in a phosphoric acid solution reaches up to 39 (pF/RH%), which is almost three times higher than the sensor fabricated in oxalic acid and about eight times higher than the sensor fabricated in sulfuric acid. Its improved sensitivity is explained in terms of the pore size effect on the mean free path and the loss of Brownian energy of the water vapour molecules. Concerning the touch sensing test case, it is demonstrated that the NP-AAO structures can be used as capacitive touch sensors because the magnitude of the capacitance change directly depends on the number of bacteria that cover the nanopores; the fraction of the electrode area activated by bacterial pore blocking is about 4.4% and 30.2% for B1 (E. Coli OD600nm = 0.1) and B2 (E. Coli OD600nm = 1) sensors, respectively.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012073
Author(s):  
C U Bhadra ◽  
D Henry Raja ◽  
D Jonas Davidson

Abstract Due to its multitude of applications, titanium oxide is one of the most coveted and most sought-after materials. The above experiment demonstrated that TiO2 nanotube arrays might be formed by electrochemical anodization of titanium foil. The 0.25 wt% ammonium fluoride (NH4F) was added to a solution of 99% ethylene glycol. Anodization is carried out at a constant DC voltage of 12V for 1 hour. Then, the annealing process is carried out for 1 hour at 4800C, which is known as an annealing. FE-SEM were utilized to evaluate the surface morphology of the nanotube arrays that were made. At the wavelength of 405 nm, sharply peaked photoluminescence intensity was observed, which corresponded tothe band gap energy (3.2 eV) of the anatase TiO2 phase. Since free excitations appear at 391 and 496 nm, and since oxygen vacancies are developed on the surface of titania nanotube arrays, it is reasonable to conclude that free excitations and oxygen vacancies are the causes of humps at 391 and 496 nm, and that they may also be present at 412 and 450 nm. FESEM results showed uniformly aligned TiO2 nanotube arrays with an inner diameter of 100 nm and a wall thickness of 50 nm


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2924
Author(s):  
Suriyakumar Dasarathan ◽  
Mukarram Ali ◽  
Tai-Jong Jung ◽  
Junghwan Sung ◽  
Yoon-Cheol Ha ◽  
...  

Vertically aligned Fe, S, and Fe-S doped anatase TiO2 nanotube arrays are prepared by an electrochemical anodization process using an organic electrolyte in which lactic acid is added as an additive. In the electrolyte, highly ordered TiO2 nanotube layers with greater thickness of 12 μm, inner diameter of approx. 90 nm and outer diameter of approx. 170 nm are successfully obtained. Doping of Fe, S, and Fe-S via simple wet impregnation method substituted Ti and O sites with Fe and S, which leads to enhance the rate performance at high discharge C-rates. Discharge capacities of TiO2 tubes increased from 0.13 mAh cm−2(bare) to 0.28 mAh cm−2 for Fe-S doped TiO2 at 0.5 C after 100 cycles with exceptional capacity retention of 85 % after 100 cycles. Owing to the enhancement of thermodynamic and kinetic properties by doping of Fe-S, Li-diffusion increased resulting in remarkable discharge capacities of 0.27 mAh cm−2 and 0.16 mAh cm−2 at 10 C, and 30 C, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2714
Author(s):  
Mario Bohač ◽  
Tihana Čižmar ◽  
Vedran Kojić ◽  
Jan Marčec ◽  
Krunoslav Juraić ◽  
...  

A novel low-cost synthesis of barium-modified TiO2 nanotube (TNT) arrays was used to obtain an immobilized photocatalyst for degradation of diclofenac. TNT arrays were prepared by electrochemical anodization of titanium thin films deposited on fluorine-doped tin oxide (FTO) coated glass by magnetron sputtering, ensuring transparency and immobilization of the nanotubes. The Ba-modifications were obtained by annealing solutions of Ba(OH)2 spin coated on top of TNT. Three different concentrations of Ba(OH)2 were used (12.5 mM, 25 mM and 50 mM). The crystalline structure, morphology and presence of Ba were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Ba-modified TiO2 nanotubes (BTNT) were tested for photocatalytic degradation of diclofenac under UV/Vis radiation and it was proven that all of the Ba-modified samples showed an increase in photocatalytic activity with respect to the unmodified TNTs. The most efficient photocatalyst was the sample prepared with 25 mM Ba(OH)2 which showed 90% diclofenac degradation after 60 min. This result was in agreement with cyclic voltammetry measurements that showed the largest increase in photo-oxidation current densities for the same sample due to the increased generation of •OH radicals obtained by a more efficient photogenerated charge separation.


Sign in / Sign up

Export Citation Format

Share Document